Approaches of Big Data in Healthcare: A Critical Review

Faizan Ahmad¹, Manish Madhav Tripathi²
¹Department of Computer Science and Engineering Integral University, Lucknow, INDIA
²Department of CSE Integral University, Lucknow, INDIA

ABSTRACT

The term big data refers to the large amount of data that desires new technologies and architectures to seek out valuable knowledge from it by using new and innovative analysis practices. As digitized medical records are currently utilized by most of the healthcare organization and pharmaceutical firms, they need started grouping and storing more and a lot of health care data in order to analyze it and obtain insights to resolve issues associated with variability in healthcare quality, cost, preparedness and safety of healthcare systems etc. The method of research into vast amount is to reveal unseen patterns and connections named as big data analytics. This paper provides information concerning all the significant developments that have carried out so far within the field of big data analysis in healthcare sector. This paper also covers key big data implementation challenges and big data solutions that attempt to solve the challenges of enormous and fast growing data bulks whereas reducing worth and notice its potential analytical value.

Keywords: big data; healthcare; big data analytics; medical image processing; signal processing.

I. INTRODUCTION

Historically, the healthcare has generated large amount of data, following by record keeping, compliance necessities, and patient care [1]. While most data is hold on in hard copy, the trend is toward rapid digitization of those large amounts of data. Driven by obligatory requirements and therefore the potential to enhance the standard of health care delivery meanwhile reducing the prices, these huge quantities of data (known as ‘big data’) hold the promise of supporting a wide range of medical and healthcare functions, together with among others clinical call support, illness police work, and population health management [2-3].

Huge data in healthcare refers to electronic health data sets that are difficult to manage with traditional software and/or hardware; neither they will be easily managed with traditional or common data management tools and methods [4]. Big data in healthcare is profuse not solely due to its volume however, also because of the diversity of data varieties and therefore the speed at which it must be managed [4].

What is big data exactly? A report which was delivered to the U.S. Congress in August 2012 defines big data as “large volumes of high velocity and variable data that require advanced techniques and technologies to enable the capture, storage, distribution, management and analysis of the information” [5]. Big data encompasses such characteristics as variety, velocity and, with respect specifically to healthcare, veracity [6]. Existing analytical techniques can be applied to the vast amount of existing patient-related health and medical data to reach a deeper understanding of outcomes that will be applied at the point of care. Ideally, individual and population knowledge would inform every doc and her patient during the decision-making method and facilitate confirm the foremost appropriate treatment option for that particular patient. Doug Laney expressed the definition of big data as three Vs i.e. Volume: the amount of massive data or the quantity of generated and stored data. Velocity: denotes the speed of data at which it is produced and managed to fulfill the demands and challenges for its growth and development. Big data is mostly available in real-time. Activities like regular monitoring, e.g. of daily measurements of glucose of a diabetic patient, blood pressure and ECGs. Variety: The nature of the data as data comes in all types of formats. This helps people who analyse it to effectively use the resulting insight.

Big data Analytics have a widen role in handling the data which is generated from varied resources to supply quality information. big data have characteristics like volume, velocity, selection and truthfulness. Since the data is...
increasing intensely day-by-day, big data not only defines the size but also finds insights from unstructured, complex, noisy, heterogeneous, longitudinal and voluminous data [1].

II. ADVANTAGES TO HEALTH CARE

By digitizing, health care organizations varying from single-physician offices and multi-provider groups to large hospital networks and accountable care organizations stand to realize significant advantages [2].

Prospective benefits include detecting diseases at earlier stages when they can be treated more effectively; managing specific individual and population health and detecting health care fraud more quickly and efficiently. Numerous queries may be addressed with big data analytics. Certain developments or outcomes is also foreseen and calculable based on vast amounts of historical data, such as length of stay; patients who will choose elective surgery; complications; patients at risk for medical complications; patients at risk for sepsis, MRSA or alternative hospital complications; patients at risk for disease progression; and doable comorbid conditions. McKinsey estimates that big data analytics can save more than $300 billion per annum in U.S. healthcare, two thirds of that through reductions of approximately. Clinical operations and R & D are two of the largest areas for potential savings with $165 billion and $108 billion in waste respectively [7].

McKinsey believes big data could help cut back waste and inefficiency within the following 3 areas:

Clinical operations:
Comparative effectiveness analysis to see a lot of clinically relevant and cost-efficient ways in which to diagnose and treat patients.

Research & development:
- Predictive modelling to lower attenuation and turn out a throw, faster, more targeted R & D pipeline in drugs and devices;
- Algorithms and Statistical tools to enhance clinical trial style and patient recruitment to better match treatments to individual patients, so reducing trial failures;
- Analysing patient records to spot innings indications and find out adverse effects before product reach the market.

Public health:
- Faster development of a lot of accurately targeted vaccines, e.g., selecting the annual influenza strains.
- Turning massive amounts of data into actionable information that may be used to determine needs, predict and prevent crises, particularly for the benefit of populations [7].

Evidence-based medicine:
Combine and analyze a variety of structured and unstructured data-EMRs, monetary and operational data, clinical data, and genomic data to match treatments with outcomes, predict patients at risk for disease or readmission and supply more efficient care.

Device/remote monitoring:
Capture, analyze in real-time massive volumes of fast-moving data from in-hospital and in-home devices, for safety monitoring and adverse event prediction.

III. LITERATURE REVIEW

Image Processing: Medical images are chief source of data frequently used for diagnosis, therapy assessment and planning [8]. Computed tomography (CT), magnetic resonance imaging (MRI), X-ray, molecular imaging, ultrasound, photo acoustic imaging, fluoroscopy, positron emission tomography-computed tomography (PET-CT), and mammography are some of the examples of imaging techniques that are well established within clinical settings.

Medical image data can range from a few megabytes for a single study (e.g., histology images) to hundreds of megabytes per study (e.g., thin-slice CT studies comprising up to 2500+ scans per study [9]). Such data requires large storage capacities. It also demands fast and accurate algorithms if any decision assisting automation were to be performed using the data.

In addition, if other sources of data acquired for each patient are also utilized during the diagnoses and treatment processes, then the problem of providing cohesive storage and developing efficient methods capable of encapsulating the broad range of data becomes a challenge.

Signal Processing: Similar to medical images, medical signals also pose volume and velocity obstacles especially continuous, high-resolution acquisition and storage from a multitude of monitors connected to each patient. However, in addition to the data size issues, physiological signals also pose complexity of a spatiotemporal nature.

Analysis of physiological signals is often more meaningful when presented along with situational context awareness which needs to be embedded into the development of continuous monitoring and predictive systems to ensure its effectiveness and robustness. Currently healthcare systems use numerous disparate and continuous monitoring devices that utilize singular physiological waveform data or discretized vital information to provide alert mechanisms in case of overt events. However, such approaches towards development and implementation of alarm systems tend to be
unreliable and their sheer numbers could cause “alarm fatigue” for both care givers and patients [10]. During this setting, the ability to discover new medical knowledge is constrained by prior knowledge that has typically fallen short of maximally utilizing high-dimensional time series data. The reason that these alarm mechanisms tend to fail is primarily because these systems tend to rely on single sources of information while lacking context of the patients’ true physiological conditions from a broader and more comprehensive viewpoint. Therefore, there is a need to develop improved and more comprehensive approaches towards studying interactions and correlations among multimodal clinical time series data. This is important because studies continue to show that humans are poor in reasoning about changes affecting more than two signals [11].

Genomics. The cost to sequence the human genome (encompassing 30,000 to 35,000 genes) is rapidly decreasing with the development of high-throughput sequencing technology [12]. With implications for current public health policies and delivery of care analysing genome-scale data for developing actionable recommendations in a timely manner is a significant challenge to the field of computational biology. Cost and time to deliver recommendations are crucial in a clinical setting. Initiatives tackling this complex problem include tracking of 100,000 subjects over 20 to 30 years using the predictive, preventive, participatory, and personalized health, referred to as P4, medicine paradigm as well as an integrative personal omics profile. The integrative personal omics profile (iPOP) combines physiological monitoring and multiple high-throughput methods for genome sequencing to generate a detailed health and disease states of a subject [11].

Ultimately, realizing actionable recommendations at the clinical level remains a grand challenge for this field. Utilizing such high density data for exploration, discovery, and clinical translation demands novel big data approaches and analytics.

1. Medical Image Processing from Big Data Point of View
The rapid climb within the range of tending organizations still because the range of patients has resulted within the bigger use of computer-aided medical diagnostics and call support systems in clinical settings. Many areas in health care like identification, prognosis, and screening will be improved by utilizing machine intelligence. The mixing of pc analysis with acceptable care has potential to assist clinicians improve diagnostic accuracy [13], the mixing of medical pictures with different styles of electronic health record (EHR) data and genomic data may improve the accuracy and cut back the time taken for a identification. Within the following, data made by imaging techniques area unit reviewed and applications of medical imaging from an enormous information of read area unit mentioned.

1.1 Data Produced by Imaging Techniques
Medical imaging encompasses a wide spectrum of different image acquisition methodologies typically utilized for a variety of clinical applications. For instance, visualizing blood vessel structure can be performed using magnetic resonance imaging (MRI), computed tomography (CT), ultrasound, and photoacoustic imaging. From a data dimension point of view, medical images might have 2, 3, and four dimensions. Positron emission tomography (PET), CT, 3D ultrasound, and functional MRI (fMRI) are considered as multidimensional medical data. Though the volume and variety of medical data make its analysis a big challenge, advances in medical imaging could make individualized care more practical and provide quantitative information in variety of applications such as disease stratification, predictive modelling, and decision making systems. In the following we refer to two medical imaging techniques and one of their associated challenges.

2. Methods
The volume of medical images is growing exponentially. For instance, Image CLEF medical image dataset contained around 66,000 images between 2005 and 2007 while just in the year of 2013 around 300,000 images were stored everyday. In addition to the growing volume of images, they differ in modality, resolution, dimension, and quality which introduce new challenges such as data integration and mining specially if multiple datasets are involved. Compared to the degree of analysis, there is considerably lesser number of research initiatives on multimodal image analysis. When utilizing data at a local/institutional level, an important aspect of a research project is on how the developed system is evaluated and validated. Having annotated data or a structured method to annotate new data is a real challenge. This becomes even more challenging when large-scale data integration from multiple institutions are taken into account. In order to benefit the multimodal images and their integration with other medical data, new analytical methods with real-time feasibility and scalability are required. In the following we look at analytical methods that deal with some aspects of big data.

3. Medical Signal Analytics
Telemetry and physiological signal monitoring devices are ubiquitous. However, continuous data generated from these monitors have not been typically stored for more than a brief period of time, thereby neglecting extensive investigation into generated data. However, in the recent past, there has been an increase in the attempts towards utilizing telemetry and continuous physiological time series monitoring to improve patient care and management [15]. Streaming data analytics in healthcare can be defined as a systematic use of continuous waveform (signal varying against time) and related medical record information developed through applied analytical disciplines (e.g., statistical, quantitative, contextual, cognitive, and predictive) to drive decision making for patient care. The analytics workflow of real-time streaming waveforms in clinical settings can be broadly described using Figure 1. Firstly, a platform for streaming data acquisition and ingestion is required which has the bandwidth to handle multiple waveforms at different fidelities. Integrating these dynamic waveform data with static data from the EHR is a key component to provide situational and contextual
awareness for the analytics engine. Enriching the data consumed by analytics not only makes the system more robust, but also helps balance the sensitivity and specificity of the predictive analytics. The specifics of the signal processing will largely depend on the type of disease cohort under investigation. A variety of signal processing mechanisms can be utilized to extract a multitude of target features which are then consumed by a retrained machine learning model to produce an actionable insight. These actionable insights could either be diagnostic, predictive, or prescriptive. These insights could further be designed to trigger other mechanisms such as alarms and notification to physicians. Harmonizing such continuous waveform data with discrete data from other sources for finding necessary patient information and conducting research towards development of next generation diagnoses and treatments can be a daunting task. For bedside implementation of such systems in clinical environments, there are several technical considerations and requirements that need to be designed and implemented at system, analytic, and clinical levels. The following subsections provide an overview of different challenges and existing approaches in the development of monitoring systems that consume both high fidelity waveform data and discrete data from non-contiguous sources.

3.1 Data Acquisition Historically streaming data from continuous physiological signal acquisition devices was rarely stored. Even if the option to store this data were available, the length of these data captures was typically short and downloaded only using proprietary software and data formats provided by the device manufacturers. The fact that there are also governance challenges such as lack of data protocols, lack of data standards, and data privacy issues is adding to this. On the other side there are many challenges within the healthcare systems such as network bandwidth, scalability, and cost that have stalled the widespread adoption of such streaming data collection [16]. This has allowed way for system-wide projects which especially cater to medical research communities. Research community has interest in consuming data captured from live monitors for developing continuous monitoring technologies. There have been several indigenous and off-the-shelf efforts in developing and implementing systems that enable such data capture [17]. There are also products being developed in the industry that facilitate device manufacturer agnostic data acquisition from patient monitors across healthcare systems.

3.2 Data Storage and Retrieval With large volumes of streaming data and other patient information that can be gathered from clinical settings, sophisticated storage mechanisms of such data are imperative. Since storing and retrieving can be computational and time expensive, it is key to have a storage infrastructure that facilitates rapid data pull and commits based on analytic demands. With its capability to store and compute large volumes of data, usage of systems such as Hadoop, MapReduce, and MongoDB is becoming much more common with the healthcare research communities. MongoDB is a free cross-platform document-oriented database which eschews traditional table-based relational database. Typically each health system has its own custom relational database schemas and data models which inhibit interoperability of healthcare data for multi-institutional data sharing or research studies. Furthermore, given the nature of traditional databases integrating data of different types such as streaming waveforms and static EHR data is not feasible. This is where MongoDB and other document-based databases can provide high performance, high availability, and easy scalability for the healthcare data needs. Apache Hadoop is an open source framework that allows for the distributed processing of large datasets across clusters of computers using simple programming models. It is a highly scalable platform which provides a variety of computing modules such as MapReduce and Spark. For performing analytics on continuous telemetry waveforms, a module like Spark is especially useful since it provides capabilities to ingest and compute on streaming data along with machine learning and graphing tools. Such technologies allow researchers to utilize data for both real time as well as retrospective analysis, with the end goal to translate scientific discovery into applications for clinical settings in an effective manner.

4. Data Aggregation Integration of disparate sources of data, developing consistency within the data, standardization of data from similar sources, and improving the confidence in the data especially towards utilizing automated analytics are among challenges facing data aggregation in healthcare systems [18]. Medical data can be complex by nature as well as being interconnected and interdependent; hence simplification of this complexity is important. Medical data is also subject to the highest level of inspection for privacy from governing bodies, therefore developing secure storage, access, and use of the data is very important. Analysis of continuous data deliberately utilizes the information in time domain. However, static data does not always provide true time context and, hence, when combining the waveform data with static electronic health record data, the temporal nature of the time context during integration can also add significantly to the challenges. There are considerable efforts in compiling waveforms and other associated electronic medical information into one cohesive database that are made publicly available for researchers worldwide. For example, MIMIC II and some other datasets included in Physionet provide waveforms and other clinical data from a wide variety of actual patient cohorts.

5. Signal Analytics Using Big Data Research in signal processing for developing big data based clinical decision support systems (CDSSs) is getting more prevalent [19]. In fact organizations such as the Institution of Medicine have long advocated use of health information technology including CDSS to improve care quality. CDSSs provide medical practitioners with knowledge and patient-specific information, intelligently filtered and presented at appropriate times, to improve the delivery of care. A vast amount of data in short periods of time is produced in
intensive care units (ICU) where a large volume of physiological data is acquired from each patient. Hence, the potential for developing CDSS in an ICU environment has been recognized by many researchers. A scalable infrastructure for developing a patient care management system has been proposed which combines static data and stream data monitored from critically ill patients in the ICU for data mining and alerting medical staff of critical events in real time. Similarly, Bressan et al. developed an architecture specialized for a neonatal ICU which utilized streaming data from infusion pumps, EEG monitors, cerebral oxygenation monitors, and so forth to provide clinical decision support. A clinical trial is currently underway which extracts biomarkers through signal processing from heart and respiratory waveforms in real time to test whether maintaining stable heart rate and respiratory rate variability throughout the spontaneous breathing trials, administered to patients before extubation, may predict subsequent successful extubation. Electrocardiograph parameters from telemetry along with demographic information including medical history, ejection fraction, laboratory values, and medications have been used to develop an in hospital early detection system for cardiac arrest. A study presented by Lee and Mark uses the MIMIC II database to prompt therapeutic intervention to hypotensive episodes using cardiac and blood pressure waveform series data. Another study shows the use of physiological waveform data along with clinical data from the MIMIC II database for finding similarities among patients within the selected cohorts. This similarity can potentially help care givers in the decision making process while utilizing outcomes and treatments knowledge gathered from similar disease cases from the past. A combination of multiple waveform information available in the MIMIC II database is utilized to develop early detection of cardiovascular instability in patients. Many types of physiological data captured in the operative and preoperative care settings and how analytics can consume these data to help continuously monitor the status of the patients during, before and after surgery, are described in[1].

6. Application of Big Data in Genomics The occurrence of high-throughput sequencing methods have validate researchers to study genetic markers over a wide range of population, improve efficiency by more than five orders of magnitude since sequencing of the human genome was completed, and associate genetic causes of the phenotype in disease states. Genome-wide analysis utilizing microarrays has been successful in analysing traits across a population and contributed successfully in treatments of complex diseases such as Crohn’s disease and age related muscular degeneration. Analytics of high-throughput sequencing techniques in genomics is an inherently big data problem as the human genome consists of 30,000 to 35,000 genes. Initiatives are currently being pursued over the timescale of years to integrate clinical data from the genomic level to the physiological level of a human being. These initiatives will help in delivering personalized care to each patient. Conveying recommendations in a clinical setting requires fast analysis of genome-scale big data in a genuine manner. This field is still in a nascent stage with applications in specific focus areas, such as cancer, because of cost, time, and labour intensive nature of analysing this big data problem. Big data applications in genomics cover a wide variety of topics. Here we focus on pathway analysis, in which functional effects of genes differentially expressed in an experiment or gene set of particular interest are analysed, and the reconstruction of networks, where the signals measured using high-throughput techniques are analysed to reconstruct underlying regulatory networks. These networks influence numerous cellular processes which affect the physiological state of a human being.

7. Pathway Analysis Resources for inferring functional effects for “omics” big data are largely based on statistical associations between observed gene expression changes and predicted functional effects. Analytical practices lead to fallacy as well as batch effects. Interpretation of functional effects has to incorporate continuous increases in available genomic data and corresponding annotation of genes. There are wide range of tools, but no gold standard for functional pathway analysis of high-throughput genome-scale data. Three generations of methods used for pathway analysis are described as follows. The foremost generation encompasses overrepresentation analysis approaches that determine the fraction of genes in a particular pathway found among the genes which are differentially expressed. Examples of the first generation tools are Onto-Express, GoMiner, and ClueGo. The subsequent generation includes functional class scoring approaches which incorporate expression level changes in individual genes as well as functionally similar genes. GSEA is a popular tool that belongs to the second generation of pathway analysis. The third generation includes pathway topology based tools which are publicly available pathway knowledge databases with detailed information of gene products interactions: how specific gene products interact with each other and the location where they interact. Pathway-Express is an example of a third generation tool that combines the knowledge of differentially expressed genes with biologically relevant changes on a given pathway to perform pathway analysis.

8. Reconstruction of Regulatory Networks Pathway analysis approaches do not attempt to make sense of high-throughput big data in biology as arising from the integrated operation of a dynamical system. There are multiple approaches to analyzing genome-scale data using a dynamical system framework. Due to the breadth of the field, in this section we mainly focus on techniques to infer network models from biological big data. Applications developed for network inference in systems biology for big data applications can be split into two broad categories consisting of reconstruction of metabolic networks and gene regulatory networks. Various approaches of network inference vary in performance, and combining different approaches has shown to produce superior predictions. Available reconstructed
metabolic networks include Recon 1, SEED, Recon 2, IOMA, and MADE. Recon 2 (improvement over Recon 1) is a model to represent human metabolism and incorporates 7,440 reactions involving 5,063 metabolites. Recon 2 has been expanded to account for known drugs for drug target prediction studies and to study off-target effects of drugs. Reconstruction of gene regulatory networks from gene expression data is another well-developed field. Network inference methods can be split into five categories based on the underlying model in each case: regression, mutual information, correlation, Boolean regulatory networks, and other techniques. Over 30 inference techniques were assessed after DREAM5 challenge in 2010.

<table>
<thead>
<tr>
<th>Toolkit name</th>
<th>Category</th>
<th>Selected applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoMiner</td>
<td>Pathway analysis</td>
<td>Pancreatic cancer</td>
</tr>
<tr>
<td>Onto-Express</td>
<td>Pathway analysis</td>
<td>Breast cancer</td>
</tr>
<tr>
<td>MapReduce</td>
<td></td>
<td>MapReduce provides the interface for the distribution of sub-tasks and the gathering of outputs. When tasks are executed, MapReduce tracks the processing of each server/node.</td>
</tr>
<tr>
<td>ClueGo</td>
<td>Pathway analysis</td>
<td>Colorectal tumors</td>
</tr>
<tr>
<td>GSEA</td>
<td>Pathway analysis</td>
<td>GSEA Pathway analysis Diabetes</td>
</tr>
<tr>
<td>The Hadoop Distributed File System (HDFS)</td>
<td>Pathway analysis</td>
<td>HDFS enables the underlying storage for the Hadoop cluster. It divides the data into smaller parts and distributes it across the various servers/nodes.</td>
</tr>
<tr>
<td>Pathway-Express</td>
<td>Pathway analysis</td>
<td>Leukemia</td>
</tr>
<tr>
<td>Recon 2</td>
<td>Reconstruction of metabolic networks</td>
<td>Drug target prediction studies</td>
</tr>
<tr>
<td>HBase</td>
<td>Reconstruction of gene regulatory networks</td>
<td>HBase is a column-oriented database management system that sits on top of HDFS. It uses a non-SQL approach.</td>
</tr>
<tr>
<td>Boolean</td>
<td>Reconstruction</td>
<td>Cardiac</td>
</tr>
</tbody>
</table>

Table 1: Some popular methods and toolkits with their applications

IV. CONCLUSION

Big data analytics that leverages legions of structured, disparate, and unstructured data sources will play an important role in how the health care system of the future is deployed. One can already notice a wide variety of analytics being employed that aids in the intelligence and the performance of healthcare personnel and patients. Here we focus on three areas of interest: physiological processing of signals, medical image analysis, and genomic data processing. Data faces similar challenges and opportunities that deals with dissimilar structured and unstructured big data sources. Although there are some very real challenges for signal processing of physiological data to deal with. Apart from the obvious need for further research in the area of data wrangling, aggregating, and harmonizing continuous and discrete medical data formats, there is also an equal need for developing novel signal processing techniques specialized towards physiological signals. Research pertaining to mining for biomarkers and clandestine patterns within bio signals to understand and predict disease cases has shown potential in providing actionable information. However, there are opportunities for developing algorithms to address data filtering, interpolation, transformation, feature extraction, feature selection, and so forth. Furthermore, with the notoriety and improvement of machine learning algorithms, there are opportunities in improving and developing robust CDSS for clinical prediction, prescription, and diagnostics [20].

REFERENCES

