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ABSTRACT 
A patient is surviving according to exponential life 

time distribution. If at some unknown point of time τ the 

Stress function changes then the life time 

distributionalsochanges. Exponential change point life time 

model is proposed. Bayes estimator of unknown change point 

τ is obtained under asymmetric loss function. 
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I. INTRODUCTION 
 

A component fails when the stress induced by 

the operating conditions exceeds the stress resisting 

capacity (strength) of the component.We consider 

strength is random variables since it depend on several 

manufacturing variables such as temperature, size, 

surface finish etc. Now, if the strength changes with time 

then the reliability and hence the whole model is 

changed. Considering these possibilities, we proposed 

and study Bayesian estimation of exponential change 

point model. Mayuri Pandya(2004) had studied the 

Bayesian analysis of the inverse weibull change point 

model considering continuous change point in strength. 

 

II. CHANGE POINT MODEL 

CONSIDERING CHANGE IN STRENGTH 
 

Let, stress s(t) be a time increasing function 

which changes at some unknown time   , viz 

                 S(t) = λt                        ; t <  τ 

                        = λ (τ +ρ(t - τ ))     ; t ≥ τ (1)Let, we 

assume strength Y as an exponential random variable 

with mean value 1 𝜃 , i.e the probability density function 

of Y is 

 

 

𝑔 𝑦 =  𝜃𝑒−𝑦𝜃       ; θ ˃ 0, x ˃ 0                                                                                 

(2) 

 

 

 

 

 

Then the stress strength model is given by, 

( )XR t  = Probability that component survive beyond 

time t 

            = 

( )

( )
S t

g y dy




 

           =𝑒−𝑆 𝑡 ∗𝜃 (3) 

So we propose following change point model (Stress 

change point model) related with  

The stress –strength model is: 
 

𝑅𝑥 𝑡 =  𝑒− 𝜆𝜃  𝑡𝑡 < 𝜏
𝑒− 𝜆 𝜏+𝜌(𝑡−𝜏) 𝜃 𝑡𝑡 ≥ 𝜏

 (4)  (4) 

Hence, 

1 − 𝐹𝑥 𝑡 =  
𝑒−𝛼𝑡 𝑡 < 𝜏𝑤ℎ𝑒𝑟𝑒𝛼 = 𝜆𝜃

𝐾𝑒−𝛼𝑡 ′𝑡 ≥ 𝑇𝑤ℎ𝑒𝑟𝑒𝛼 = 𝜆 𝜏 + 𝜌(𝑡 − 𝜏) 𝜃
   

Thus  upper equation will be, 

f(X|α) =    α exp[-αx]                                           ,x<τ 

 k ρ α exp[-αx’]                                    ,x≥τ , 

x>0 

Where k is such that 

0

1 ( ) ( ') 'f x dx f x dx







    

Which gives 

k=1 

1= α exp[−αx]
𝜏

0
 dx + k  ρα exp[−αx′]

∞

𝜏
 dx’ 

Hence, 

F(X⎹ α, β ) =     α  exp[−αx]                                                                 
, x<τ 

                          ρ α  exp[−αx′]   ,x≥τ , x>0   
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Where, 

x’ = τ +ρ(x - τ )     α =λ θ 

 

 

The likelihood function of α and τ given 

 nXXXX ,.......,, 21  is  

L(α, τ⎹X ) =   {𝛼𝑒−𝛼𝑥𝑖  }𝜖𝑖𝑛
𝑘=1 {𝜌𝛼𝑒−𝛼𝑥 ′

𝑖  }1−𝜖𝑖  

 

                     = 𝜌𝑛−𝑑1(𝜏)𝛼𝑛   exp[-α  𝑥𝑖𝜖𝑖
𝑛
𝑖=1 ] exp[-

𝛼 𝑥 ′
𝑖(1 − 𝜖𝑖)

𝑛
𝑖=1 ]                   

Where, 

𝑑1(𝜏) =  𝜖𝑖
𝑛
𝑖=1  = d1(τ| x) 

𝐴1(𝜏)=  𝑥𝑖𝜖𝑖
𝑛
𝑖=1  = 𝐴1(τ| x) 

𝐴2(𝜏)=  𝑥′𝑖(1 − 𝜖𝑖
𝑛
𝑖=1 )= 𝐴2(τ| x) 















i

i

i
xif

xif

,0

,1
.    (5) 

 

III.       POSTERIOR DENSITIES USING 

INFORMATIVE PRIOR IN MODEL-1 

(INVERTED GAMMA PRIOR) 
 

In this section, we derive marginal posterior density of τ 

using informative prior.We suppose the marginal prior 

distributions of α be inverted gamma distribution viz, 

g(α) = 
𝑏𝑎

𝛤𝑎
 α

-a-1
 exp(-b/α)                                                                                 

  (6) 

         ; a = (μ/σ)
2 
+ 2 

              b = μ[(μ/σ)
2 
+ 1]                          (6) 

If the prior information is given in terms of the prior 

mean and standard deviation then hyper parameters can 

be obtained by solving the equations, 

db
b

]11[
2

1 

 

)]1/(ln[

]ln[




bb
a



 

 
 For unknown change point τ, we assume that it 

takes one of the n observed values 1 2,.........,, nx x x and 

taking discrete values with prior probability i=1,2,…..,n. 

Then the joint prior density of α and τi , g1(α, τi) is 

g1(α, τi) = g1(α| τi =xi)  (0  τi =xi) 

                = 
𝑏𝑎

𝛤𝑎
 α

-a-1 
 exp(-b/𝛼)  (0  τi =xi) 

                = K1 α
-a-1 

exp(-b/𝛼)                                                                                

(7) 

Where,  

       K1=  
𝑏𝑎

𝛤𝑎
 (0  τi =xi)  

Joint posterior density of α and τi, g1(α, τi | x), is given by, 

 g1(α, τi | x) = L(α, τi | x) g(α, τi)/ h1(x) 

 =𝜌𝑛−𝑑1(𝜏)𝛼𝑛  exp(-αA1) exp(-αA2) 
𝑏𝑎

𝛤𝑎
 α

-a-1 
 exp(-b/𝛼)  (0  

τi =xi) / h1(x) 

=𝜌𝑛−𝑑1(𝜏) 𝑏𝑎

𝛤𝑎
 (0  τi =xi) α

n-a-1 
  exp(-α(A1+ A2 )) exp(-b/𝛼) 

/ h1(x)                                       (8) 

Where, 

h1(x) = 


n

i 1
 𝜌𝑛−𝑑1(𝜏)∞

0

𝑏𝑎

𝛤𝑎
 (0  τi =xi) α

n-a-1 
  exp(-α(A1+ 

A2 )) exp(-b/𝛼) d𝛼 

= 


n

i 1
 𝐾

∞

0 2 α
n-a-1 

  exp(-α(A1+ A2 )) exp(-b/𝛼) d𝛼                                                  

(9) 

K2= 𝜌𝑛−𝑑1(𝜏) 𝑏𝑎

𝛤𝑎
 (0  τi =xi) 

If [Re(A3)>0 && Re(b)>0, 2 𝐴3

𝑎−𝑛

2   (1
b )

𝑎−𝑛

2  

   Bessel k[ a-n,  2  𝐴3 𝑏 ;  α𝑎+𝑛−1∞

0
 exp(-α𝐴3-

𝑏

α
) d α                                  

(10) 

Hence, marginal  posterior density of chang point τi , g1(τi 

=xi |x ) is given by, 

g1(τi =xi| x) =  g1 (α, τi|x)
∞

0
 dα 

  = 𝜌𝑛−𝑑1(𝜏)∞

0

𝑏𝑎

𝛤𝑎
 (0  τi =xi) α

𝑛−𝑎−1 exp(-α(A1 (τ)+ A2(τ) 

)) exp(-b/𝛼) / h1(x)  d α 

= 𝜌𝑛−𝑑1(𝜏) 𝑏𝑎

𝛤𝑎
 (0  τi =xi)  α𝑛−𝑎−1∞

0
 exp(-α(A1(τ)+ A2(τ) 

)) exp(-b/𝛼) / h1(x)  d α 

=𝜌𝑛−𝑑1(𝜏) 𝑏𝑎

𝛤𝑎
 (0  τi =xi){2 (𝐴1(τ) + 𝐴2(τ))

𝑎−𝑛

2 ( 
1

𝑏
)
𝑎−𝑛

2  

     Bessel K[a-n, 2  𝐴1(τ) + 𝐴2(τ) 𝑏] / h1(x)  

                             ; If [Re (𝐴1(τ) + 𝐴2(τ)) >0 && 

Re(b)>0]                      (11) 

USING NON-INFORMATIVE PRIOR 

 In this section, we derive marginal posterior 

density of τ using non-informative prior. 

Sometimes no prior information or technical knowledge 

about the parameters are available then we take Non-

informative prior. Let us consider such non-informative 

prior densities on α1 and α2 to be, 

g2(α) = 
1

α
;α>0 

g2(α, τ| x)= g2 (α | τi =xi)  (0  τi =xi) 

g2(α, τ )=   
 (0 τi = xi )

α
 

Now, 

L(α, τ| x) g2(α, τ ) 

=  
 (0 τi = xi )

α
𝜌𝑛−𝑑1(𝜏)α𝑛  exp(-α 𝑥𝑖

𝑛
𝑖=1 ε𝑖)  exp (-α 𝑥𝑖

𝑛
𝑖=1 ’ 

(1-ε𝑖))                                                     (12) 

Joint posterior density of  α and τi  is given by 

g2(α, τi| x) = L(α, τ| x)g2(α, τi ) / h2(x) (13) 

Where, 

h2(x) =   L(α, τ| x) g2(α, τ )
∞

0
𝑛
𝑖=1  d α                   (13) 

 

   (14) 
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Hence, marginal posterior density of change point τ𝑖 , 

𝑔2(τ𝑖 =  𝑥𝑖  | x ) is given by, 

𝑔2(τ𝑖 =  𝑥𝑖  | x ) =  g2(α, τ| x)
∞

0
 dα 

= 
1

ℎ2  (x)
 (0  τi =xi) 𝜌

𝑛−𝑑1 𝜏  {  α𝑛−1∞

0
   exp(-α (𝐴1(𝜏) + 

𝐴2(𝜏) ))} dα 

=
1

ℎ2  (x)
 (0  τi =xi) 𝜌

𝑛−𝑑1 𝜏 
Γn

(𝐴1 𝜏 + 𝐴2 𝜏 )𝑛
 

=
 (0 τi = xi ) 𝜌𝑛−𝑑1 𝜏 I1 (τi )

  (0 τi = xi ) 𝜌𝑛−𝑑1 𝜏 I1 (τi )𝑛
𝑖=1

 (15) 

   Where,     I1 (τi) = 
Γn

(𝐴1 𝜏 + 𝐴2 𝜏 )𝑛
               (15) 

 

marginal posterior density of α, given by g(α | x)  

          g(α | x) =   g(α | x)
∞

0
 dα 

                      = α𝑛−𝑎−1 𝑏𝑎

Γ a
exp⁡(−𝑏

α )       𝜌𝑛−𝑑1 𝜏 𝑛
𝑖=1    

exp(-α (𝐴1(𝜏) + 𝐴2(𝜏) )(16) 

The joint posterior density of α and g2(α | x)  is given by, 

𝑔2(α | x) =  𝑔4 
𝑛
𝑖=1 (α, τ𝑖  | x )  

= 
1

ℎ2  (x)
  (0 τi = xi) 𝜌𝑛−𝑑1 𝜏 𝑛

𝑖=1 α𝑛−1 exp(-α (𝐴1(𝜏) + 

𝐴2(𝜏) )(17) 

 

IV.       BAYES ESTIMATES 
 

4.1 Using Informative Prior 

In this section we obtain Bayes estimates of change point 

τ using informative prior for this model.Expected loss 

function, E1[L1(τ , d)]  with respect to the posterior 

density , we get the Bayes estimate τ𝐿
* 

 of  τ using  Linex 

loss function as, 

τ𝐿
*  

 = 
−1

𝑞1
 ln E1[𝑒

−𝑞1τ] 

τ𝐿
*  

 = 
−1

𝑞1
 ln [ 𝑒−𝑞1τ𝑖𝑛

𝑖=1 𝜌𝑛−𝑑1 𝜏 
𝑏𝑎

Γ a
 (0 τi = xi)  {2 

(𝐴1(τ) + 𝐴2(τ))
𝑎−𝑛

2 ( 
1

𝑏
)
𝑎−𝑛

2  

     Bessel K[a-n, 2  𝐴1(τ) + 𝐴2(τ) 𝑏] / h1(x)  

; If [Re (𝐴1(τ) + 𝐴2(τ)) >0 && Re(b)>0]                         

(18) 

Similarly, Bayes estimate τ𝐸
*  

of τ using General Entropy 

loss function as, 

τ𝐸
*  = [  𝐸2 (𝜏)−𝑞3 ]−1 𝑞3  

τ𝐸
*
=[

 α𝑛−𝑎−1∞

0
α−𝑞3

𝑏𝑎

Γ a
exp⁡(−𝑏

α )  𝜌𝑛−𝑑1 𝜏 𝑛
𝑖=1    exp⁡(−α 𝐴1 𝜏 +

                      𝐴2𝜏]−1𝑞3 d α 

       

=[
𝑏𝑎

Γ a
 𝜌𝑛−𝑑1 𝜏  α𝑛−𝑎−1∞

0
α−𝑞3 exp −𝑏

𝛼  𝑛
𝑖=1  exp(−α 𝐴1 𝜏 +

𝐴2𝜏]𝑑α−1𝑞3 

= 𝑏𝑎

Γ a
 𝜌𝑛−𝑑1 𝜏 𝑛

𝑖=1   2 (𝐴1(τ) + 𝐴2(τ))
𝑎+𝑞3−𝑛

2 ( 
1

𝑏
)
𝑎+𝑞3−𝑛

2    

Bessel K[a+𝑞3-n, 2  𝐴1(τ) + 𝐴2(τ) 𝑏]  

; If [Re (𝐴1(τ) + 𝐴2(τ)) >0 && Re(b)>0](19) 

 

4.2 Using Non Informative Prior 

τ𝐿
**  

 = 
−1

𝑞1
 ln E2[𝑒

−𝑞1τ] 

τ𝐿
**  

 = 
−1

𝑞1
 ln [ 𝑒−𝑞1τ𝑖𝑛−1

𝑚=1  (0 τ𝑖= 𝑥𝑖) 

𝜌𝑛−𝑑1 τ𝑖 I1 (τi)/  (0 τ𝑖 =  𝑥𝑖)
𝑛−1
𝑚=1  

𝜌𝑛−𝑑1 τ𝑖 I1 (τi)] (20) 

τ𝐸
**  = [  𝐸2 (𝜏)−𝑞3 ]−1 𝑞3 = [  𝜏𝑖

−𝑞3𝑛−1
𝑚=1   (0 τ𝑖= 𝑥𝑖) 

𝜌𝑛−𝑑1 τ𝑖 I1 (τi)/  (0 τ𝑖 =  𝑥𝑖)
𝑛−1
𝑚=1 𝜌𝑛−𝑑1 τ𝑖 I1 (τi)](21) 

 

V.        NUMERICAL EXAMPLE 

 

 Let stress be a time function as given below and 

we assume that it suddenly changes at some unknown 

time , viz  

 

2                                 ;t<20
( )

2 20 (0.3)( 20)    ;t 20,0 1

t
S t

t 


 

    
We assume that the strength Y of component is a 

exponential random variable with mean strength 1
𝜃 . 

Hence, life time X follows exponential distribution with 

distribution function  

       Fx(t) = 1 -𝑒−𝛼𝑥                                  ;t<20 

                = 1 - 𝑒−𝛼𝑥 ′
                               ;t≥ 20 

with α= 0.1, ρ= 0.3, x'=20+0.3(x-20). And we have 

generated 14 random observations from this  model. As 

explained in section 6.3.𝛼 is considered a random 

observation from inverted gamma distributions with 

mean 0=0.1 and 𝜎=0.1 resulting in a= 66  and b= 52. 

 

Table 1: Generated observations from Model 
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i 1 2 3 4 5 6 7 

Xi 15.77 8.88 6.4 3.55 2.2 22.81 16.27 

i 8 9 10 11 12 13 14 

Xi 5.22 20.1 52.59 188.21 50.38 78.83 174.09 

 

We have calculated posterior mean, posterior mode and 

posterior median of τ under the informative and non-

informative priors. These results are shown in Table2 

 

Table 2: The Bayes estimates of change point τ for Model 

Prior Bayes estimates of change point τ 

PosteriorMedian PosteriorMean PosteriorMode 

Informative 19 20 22 

Non-informative 18 18 23 

 

 We compute the Bayes estimates 
*

E

*

L , ,

**

E

**

L ,   of τ for the data given in Table-1 under the 

informative and non-informative priors using equations 

18,19,20,21 respectively and results are shown in Table-3. 

 

Table 3: The Bayes estimates using Asymmetric Loss Functions for Model 

Shape parameter of 

asymmetric loss 

functions 

Bayes estimates of change point 

with Informative prior 

Bayes estimates of change point 

with Non-Informative prior 

q1 q3 
*

L  
*

E  
**

L  
**

E  

0.09 0.09 20 20 18 19 

0.10 0.10 19 20 18 19 

0.20 0.20 20 20 18 19 

1.2 1.2 19 18 18 17 

1.5 1.5 18 17 17 18 

-1.0 -1.0 21 22 22 23 

-2.0 -2.0 22 23 23 24 

 

Table 3 shows that for small values of |q|, q1= 0.09, 0.1,0.2 

Linex loss function is almost symmetric and nearly 

quadratic and the values of the bayes estimate under such a 

loss is not far from the posterior mean table 3 also shows 

that, for q1=1.5, 1.2, Bayes estimate are less than actual 

value of τ = 20. 

For q1= q3 = -1= -2, Bayes estimates are quite large than 

actual value τ = 20. It can be seen from table3 that the 

negative sign of shape parameter of loss function reflecting 

underestimation is more serious than overestimation. Thus 

problem of underestimation can be solved by taking the 

value of shape parameters of Linex and General Entropy 

loss function negative. 

Table 3 shows that for small values of |q|, q1= 0.09, 0.1,0.2 

General Entropy loss function,the values of the bayes 

estimate under such a loss is not far from the posterior 

mean. Table 3 also shows that, for q1=1.5, 1.2, Bayes 

estimate are less than actual value of τ = 20. 

It can be seen Table 3 that positive sign of shape parameter 

of loss functions reflecting overestimation is more serious 

than under estimation. Thus problem of over estimation 

can be solved by taking the value of shape parameter of 

Linex and General Entropy loss function positive and high. 
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