Comparison of The Markowitz and Single Index Model Based on M-V Criterion in Optimal Portfolio Formation

S. I. U. Chasanah¹, D. C. Lesmana², I. G. P. Purnaba³

¹,²,³Department of Mathematics, Bogor Agricultural University, INDONESIA

ABSTRACT

This research aim to compare the result of optimal portfolio formation between Markowitz and Single Index Models based on Mean-Variance criterion. The optimal portfolio with Markowitz Model is calculated by minimizing risk and determine the specific expected return level. Optimal portfolio calculation with Single Index Model results the proportion fund of each stock, thus it obtained the expected return and risk of the portfolio. The Comparison based on M-V criterion performed by determining the same expected return level portfolio of the Single Index Model, as a constraint on the Markowitz Model to minimize the risk. This research was applied to stocks in Jakarta Islamic Index (JII). At the same expected return rate of 1.2939% per week, Markowitz Model has a risk of 0.0973% per week and the Single Index Model has a risk of 0.3318% per week. Based on the M-V Criterion, it can be concluded that the optimal portfolio formation with Markowitz Model is more dominant than the Single Index Model on Jakarta Islamic Index (JII) stocks in the period of December 1st, 2015-November 30th, 2016.

Keywords-- Markowitz Model, M-V Criterion, optimal portfolio, Single Index Model

I. INTRODUCTION

Investment is a commitment to invest the capital in one or more assets in order to get benefit for the future. One of the trades in the capital market is a stock. Stock is the securities as proof of ownership or possession of individuals or institutions issued by Perseroan Terbatas (PT). In stock investments, investors need to consider two things: the expected return and variance. Therefore, Investors need to make diversification in invest. Diversification means that investors need to form a portfolio through the selection of a number of assets, thus the risks can be minimized without reducing the level of expected returns. In 1952, Harry Markowitz created a portfolio selection model that incorporated the principle of diversification [4]. The first step of the model is to identify an efficient portfolio. An efficient portfolio is a portfolio with a maximum yield rate at a given risk level or a portfolio with minimal risk at a given rate of return. Both ways to get an efficient portfolio will produce the same results. A set of efficient portfolios will form a line called the efficient frontier line. In a set of efficient portfolios there is an optimal portfolio based on investor preference by determining the desired return or risk level. The determination of the optimal portfolio is known as the optimal portfolio determination based on the Markowitz Model. The results of optimum Markowitz Model portfolio formation depend heavily on investor preferences on the risks or expected return that serve as constraints on the model. An optimal portfolio can also be established by finding the best combination of returns and risks. The combination can be obtained by finding the tangent point between efficient frontier and straight line drawn from the risk free return. This tangent point is the point of contact between the efficient frontier and the straight line having the largest slope. By optimizing the slope, we will get the best return and risk combination. Such optimization requires as much as n estimation of yield, n variance estimation and n(n-1)/2 covariance with total number of $2n + n(n-1) / 2$. The calculations are not effective for large n, so William Sharpe developed a model known as the Single Index Model to simplify the calculation. The Single Index Model is based on the observation that the price of a securities fluctuates in the direction of the market price index. In general, if the stock price index rises then the stock price also rises, and vice versa, if the stock price index is fall, then generally stock prices is also fall. The Single Index Model requires only n estimated returns, n estimation of beta value, n unique risk estimation and 1 estimated market yield of macroeconomic factors, so the total calculation of this Single Index Model is $3n + 1$.

We are interested to know whether a simpler model, Single Index Model can produce a more dominant optimal portfolio compared with Markowitz Model. The comparison is based on Mean-Variance criterion. The M-V criterion compares the portfolio optimization Model based on two factors, namely the return and risk factors of both portfolios. Case studies in this research were conducted on stock of companies entering the Jakarta Islamic Index (JII).
II. METHODOLOGY

For getting stock information about companies that consistantly registered on Jakarta Islamic Index (JII), this research used secondary data which took from official website of Indonesian Bank at www.bi.go.id. The data was taken for four period which are December 2014-May 2015, June 2015-November 2015, December 2015-May 2016 and June 2016-November 2016. Risk free asset return R_{fr} based on Sertifikat Bank Indonesia Syariah (SBIS) can be taken from official website of Indonesian Bank at period December 1st, 2015-November 30th, 2016. Furthermore, the adjusted closed price of stock for every company was taken from www.yahoofinance.co.id at period December 1st, 2015-November 30th, 2016.

In this research comparing optimal portfolio formation with Single Index and Markowitz Model by taking the same level of expected return value. The first step is to determine the optimal portfolio with a single index Model that generates the proportion of fund, expected return and risk of portfolio. Furthermore, the determination of the optimal portfolio with the Markowitz Model is done by minimizing the variance and taking the same expected return rate as the result of Single Index Model. The last step, compare the results from both Models with M-V Criterion.

III. RESEARCH MODELS

In 1952, Harry Markowitz created the Markowitz Model to form an optimal portfolio. Then William Sharpe create the Single Index Model to simplify the calculation of the Markowitz Model

MARKOWITZ MODEL

The calculation of the optimal portfolio with Markowitz Model is done by minimizing risk portfolio and determine the specific expected return level portfolio to obtain the proportion of each stock [3]:

$$\text{minimize } \sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j Cov(R_i, R_j)$$

subject to:
1. $\sum_{i=1}^{n} w_i = 1$
2. $\sum_{i=1}^{n} w_i E(R_i) = R^*$
3. $w_i \geq 0$ with $1 \leq i \leq n$

Where $\sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j Cov(r_i, r_j)$ is variance or risk portfolio [1]. $\sum_{i=1}^{n} w_i E(R_i)$ is expected return portfolio [1] and w_i is the proportion on stock i. R^* is the specific expected return portfolio that determined by investor.

Since the objective function is non-negative, it can be multiplied by any non-negative constant without changing the solution. So the objective function can be written as follows:

$$\text{minimize } \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j Cov(R_i, R_j)$$

This problem is optimization problem where the solution can be solved by using Lagrangian equation.

$$= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j Cov(r_i, r_j) - \lambda_1 (\sum_{i=1}^{n} w_i - 1) - \lambda_2 (\sum_{i=1}^{n} w_i E(R_i) - R^*)$$

where λ_1 and λ_2 are Lagrangian multiplier.

Searching for the first derivative of the objective function L to the proportion of each stock and Lagrangian multiplier, then set derivative to zero as follows:

$$\frac{dL}{dw_i} = \sum_{j=1}^{n} w_j Cov(R_i, R_j) - \lambda_1 - \lambda_2 E(R_i) = 0, \quad i = 1, 2, \ldots, n$$

$$= \sum_{i=1}^{n} w_i - 1 = 0$$

$$= \sum_{i=1}^{n} w_i E(R_i) - R^* = 0$$

Suppose:

$$\bar{1} = [1\ 1 \ldots\ 1]^T$$

$$\bar{\mu} = [E(R_1)\ E(R_2) \ldots\ E(R_n)]^T$$

$$\bar{\Omega} = \begin{bmatrix}
Cov(R_1, R_1) & Cov(R_1, R_2) & \cdots & Cov(R_1, R_n) \\
Cov(R_2, R_1) & Cov(R_2, R_2) & \cdots & Cov(R_2, R_n) \\
\vdots & \vdots & \ddots & \vdots \\
Cov(R_n, R_1) & Cov(R_n, R_2) & \cdots & Cov(R_n, R_n)
\end{bmatrix}$$

From equation (3.4), then obtained:

$$\sum_{i=1}^{n} w_i Cov(R_1, R_i) - \lambda_1 - \lambda_2 E(R_i) = 0$$

$$\sum_{i=1}^{n} w_i Cov(R_1, R_i) = \lambda_1 - \lambda_2 E(R_i)$$

$$\Rightarrow \bar{\Omega} \bar{w}^* = \lambda_1 \bar{1} + \lambda_2 \bar{\mu}, \quad \text{with}$$

$$\bar{w}^* = \begin{bmatrix}
w_1 \\
w_2 \\
\cdot \\
w_n
\end{bmatrix} = \begin{bmatrix}
w_1 \\
w_2 \\
\cdot \\
w_n
\end{bmatrix} = \begin{bmatrix}
w_1 \\
w_2 \\
\cdot \\
w_n
\end{bmatrix}$$

Because $\bar{\Omega}$ is covariance then $\bar{\Omega}$ is definite positive. Because $\bar{\Omega}$ is definite positive, then $\bar{\Omega}$ is invertible.

$$\Omega^{-1} \bar{w}^* = \Omega^{-1} (\lambda_1 \bar{1} + \lambda_2 \bar{\mu})$$

$$\Rightarrow I \bar{w}^* = \Omega^{-1} (\lambda_1 \bar{1} + \lambda_2 \bar{\mu})$$

$$\Rightarrow \bar{w}^* = \Omega^{-1} (\lambda_1 \bar{1} + \lambda_2 \bar{\mu})$$

Calculate λ_1 and λ_2.

From equation (3.7), then obtained:

$$\bar{w}^* = \Omega^{-1} (\lambda_1 \bar{1} + \lambda_2 \bar{\mu})$$

$$\Rightarrow \bar{w}^* = \Omega^{-1} \lambda_1 \bar{1} + \Omega^{-1} \lambda_2 \bar{\mu}$$

$$\Rightarrow \bar{1}^T \bar{w}^* = \bar{1}^T \Omega^{-1} \lambda_1 \bar{1} + \bar{1}^T \Omega^{-1} \lambda_2 \bar{\mu}$$

$$\Rightarrow \lambda_1 \lambda_2$$

Based from the first constrain, can be written as follows:

$$\sum_{i=1}^{n} w_i = w_1 + w_2 + \cdots + w_n = [1\ 1 \ldots\ 1] \begin{bmatrix}
w_1 \\
w_2 \\
\cdot \\
w_n
\end{bmatrix}^T$$

$$\bar{1}^T \bar{w}^* = 1$$

From equation (3.8), then obtained:

$$1 = \bar{1}^T \bar{w}^* = \lambda_1 \bar{1}^T \Omega^{-1} \bar{1} + \lambda_2 \bar{1}^T \Omega^{-1} \mu$$

Copyright © 2017. Vandana Publications. All Rights Reserved.
Based from the second constrain, can be written as follows:

$$\sum_{i=1}^{n} w_i E(R_i) = w_1 E(R_1) + w_2 E(R_2) + \cdots + w_n E(R_n) = [E(R_1), E(R_2), \ldots, E(R_n)] \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} = \mu^T w^* = R^*,$$

then obtained:

$$R^* = \mu^T w^* = \lambda_1 \mu^T \Omega^{-1} + \lambda_2 \mu^T \Omega^{-1} \mu \quad (3.9)$$

Suppose:

$$a = \tilde{\Omega}^{-1} \tilde{\Omega}$$
$$b = \tilde{\Omega}$$
$$c = \mu^T \Omega^{-1} \mu$$

Based (3.8) and (3.9), then obtained the system of equation:

$$\begin{align*}
1 &= \lambda_1 a + \lambda_2 b \\
\lambda_1 &= \lambda_1 a + \lambda_2 c
\end{align*} \quad (3.10)$$

Based from the system of equation, then obtained:

$$\lambda_1 = \frac{c-bk^*}{ac-b^*} \text{ dan } \lambda_2 = \frac{ak^*-b}{ac-b^*}$$

or

$$R^* = \frac{(\mu^T \Omega^{-1} - (\mu^T \Omega^{-1} \mu) R^* \mu^T \Omega^{-1} \mu)}{(\mu^T \Omega^{-1} \mu) \mu^T \Omega^{-1} \mu) (\mu^T \Omega^{-1} \mu) \mu^T \Omega^{-1} \mu)} \quad (3.12)$$

Substituting (3.12) and (3.13) to (3.7), then obtained:

$$w^* = \Omega^{-1} \left[\begin{bmatrix} (\mu^T \Omega^{-1} - (\mu^T \Omega^{-1} \mu) R^* \mu^T \Omega^{-1} \mu) \\
(\mu^T \Omega^{-1} \mu) \mu^T \Omega^{-1} \mu \mu^T \Omega^{-1} \mu \end{bmatrix} \right] \tilde{\Omega} + \Omega^{-1} \left[\begin{bmatrix} (\mu^T \Omega^{-1} - (\mu^T \Omega^{-1} \mu) R^* \mu^T \Omega^{-1} \mu) \\
(\mu^T \Omega^{-1} \mu) \mu^T \Omega^{-1} \mu \mu^T \Omega^{-1} \mu \end{bmatrix} \right] \mu.$$

Minimum variance portfolios

Based equation (3.7) then obtained minimum variance portfolios, as follows:

$$\sigma^2_p = w^T \Omega w^* = \left[(\mu^T \Omega^{-1} \mu + \lambda_2 \mu^T \Omega^{-1} \mu) \right] \Omega^{-1} \left((\mu^T \Omega^{-1} \mu + \lambda_2 \mu^T \Omega^{-1} \mu) \right)$$

Because (A + B)^T = A^T + B^T dan (AB)^T = B^T A^T, then

$$\sigma^2_p = \left[(\lambda_1 \mu^T \Omega^{-1} + \lambda_2 \mu^T \Omega^{-1} \mu) \right] \Omega^{-1} \left[(\mu^T \Omega^{-1} \mu + \lambda_2 \mu^T \Omega^{-1} \mu) \right]$$

$$= \left[\lambda_1 \Omega^{-1} \mu + \lambda_2 \mu^T \Omega^{-1} \mu \right] \Omega^{-1} \left[(\mu^T \Omega^{-1} \mu + \lambda_2 \mu^T \Omega^{-1} \mu) \right]$$

$$= \left[\lambda_1 \Omega^{-1} \mu + \lambda_2 \mu^T \Omega^{-1} \mu \right] \Omega^{-1} \left[(\mu^T \Omega^{-1} \mu + \lambda_2 \mu^T \Omega^{-1} \mu) \right].$$

$$I$$ is identity matrix

$$\sigma^2_p = \left[\lambda_1 \Omega^{-1} \mu + \lambda_2 \mu^T \Omega^{-1} \mu + \lambda_2 \mu^T \Omega^{-1} \mu \right]$$

$$= \lambda_1 \Omega^{-1} \mu + \lambda_2 \mu^T \Omega^{-1} \mu + \lambda_2 \mu^T \Omega^{-1} \mu$$

$$= \lambda_1 \Omega^{-1} \mu + \lambda_2 \mu^T \Omega^{-1} \mu$$

$$= \lambda_1 \Omega^{-1} \mu + \lambda_2 \mu^T \Omega^{-1} \mu$$

$$= \lambda_1 \Omega^{-1} \mu + \lambda_2 \mu^T \Omega^{-1} \mu$$

Based on the result, it can be concluded that the variance (risk) based on the Markowitz Model is still dependent on the expected return portfolio R^*.

Global minimum variance portfolio

Calculated the expected return portfolio as follows:

$$\sigma^2_p = \left(\frac{2(\Omega^{-1} \mu \mu^T \Omega^{-1} \mu)}{(\mu^T \Omega^{-1} \mu \mu^T \Omega^{-1} \mu)} \right) R^*$$

$$= \left(\frac{2(\Omega^{-1} \mu \mu^T \Omega^{-1} \mu)}{(\mu^T \Omega^{-1} \mu \mu^T \Omega^{-1} \mu)} \right) = 2 \Omega^{-1} \Omega^{-1} \mu \mu^T \Omega^{-1} \mu = 2 a R^* - 2 b = 0$$

$$\Rightarrow R^* = \frac{b}{a}$$

with variance portfolio, as follows:

$$\sigma^2_p = \lambda_1 + \lambda_2 R^* = \frac{c-bk^*}{ac-b^*} + \frac{ak^*-b}{ac-b^*} = \frac{c}{a}$$

This figure show the global minimum variance portfolio, so the optimal portfolio can be chosen from efficient frontier with $E(R_p) > \frac{b}{a}$.

![Figure 1: The global minimum variance portfolio](image)

SINGLE INDEX MODEL

The Single Index Model is based on the observation that the price of a securities fluctuates in the direction of the market price index. On this basis, returns from securities and returns from common market indices can be written as follows [2]:

$$R_t = \alpha_i + \beta_i R_m \quad i = 1,2, \ldots, n \quad (3.15)$$

Where R_t are return on stock i, α_i are random variable showing the return of each stock which is independent to market performance, β_i are coefficient that measures the change of R_t as a result of R_m [1], R_m is rate of return of the market index.

Then α_i composed by $\alpha_i + e_i$, where α_i are intercept of a straight line or Alpha coefficient and e_i are error term with the mean of zero ($E(e_i) = 0$). So the Single Index Model can be written as follows [5]:

$$R_t = \alpha_i + \beta_i R_m + e_i \quad i = 1,2, \ldots, n \quad (3.16)$$

There are assumptions on the Single Index Model which is Cov(e_i, e_j) = 0 and Cov(e_i, R_m) = 0, then the variance and covariance of Single Index Model as follows[3]:

$$\sigma^2_p = \left(\frac{2(\Omega^{-1} \mu \mu^T \Omega^{-1} \mu)}{(\mu^T \Omega^{-1} \mu \mu^T \Omega^{-1} \mu)} \right) R^*$$

$$= \left(\frac{2(\Omega^{-1} \mu \mu^T \Omega^{-1} \mu)}{(\mu^T \Omega^{-1} \mu \mu^T \Omega^{-1} \mu)} \right) = 2 a R^* - 2 b = 0$$

$$\Rightarrow R^* = \frac{b}{a}$$

with variance portfolio, as follows:

$$\sigma^2_p = \lambda_1 + \lambda_2 R^* = \frac{c-bk^*}{ac-b^*} + \frac{ak^*-b}{ac-b^*} = \frac{c}{a}$$

This figure show the global minimum variance portfolio, so the optimal portfolio can be chosen from efficient frontier with $E(R_p) > \frac{b}{a}$.
\[\sigma_i^2 = \beta_i^2 \sigma_m^2 + \sigma_{e_i}^2 \quad \text{and} \quad \sigma_{ij} = \beta_i \beta_j E[R_m - E(R_m)]^2 \]

(3.17) The establishment of an optimal portfolio based on the Single Index Model is used slope optimization which will result in the proportion of funds to be allocated to each company. Slope can be calculated by the following formula \[[3]: \]

\[\theta = \frac{E(R_p) - R_{br}}{\sigma_p} \]

(3.18) Where \(E(R_p)\) is expected return of portfolio \(P\), \(R_{br}\) is risk free asset and \(\sigma_p\) is risk (deviation standard) of portfolio \(P\).

Maximizing the slope can be calculated by searching for the first derivative of the objective function \(\theta\) to the proportion of each stock, so as to obtain the following system of equations \([5]: \]

\[(\sum_{j=1}^{n} w_j \psi_{ij}) = E(R_i) - R_{br}. \]

(3.19) Where \(\psi = \left[\sum_{i=1}^{n} \frac{w_i E(R_i) - R_{br}}{\sigma_{e_i}} \right] \)

Let \(\psi w_i = Z_i\) then in general the optimization equation as follows:

\[Z_i \sigma_{e_i}^2 \sum_{j=1}^{n} w_j \sigma_{ij} = E(R_i) - R_{br}. \]

(3.20) Substituting the variance and covariance equations of the Single Index Model (3.17) to equation (3.20), thus obtaining:

\[Z_i (\beta_i^2 \sigma_m^2 + \sigma_{e_i}^2) + \sum_{j=1}^{n} (Z_j \beta_i \beta_j \sigma_{mij}^2) = E(R_i) - R_{br} \]

\[Z_i \beta_i^2 \sigma_m^2 + Z_i \sigma_{e_i}^2 + \sum_{j=1}^{n} (Z_j \beta_i \beta_j \sigma_{mij}^2) = E(R_i) - R_{br} \]

\[Z_i \sigma_{e_i}^2 + \sum_{j=1}^{n} (Z_j \beta_i \beta_j \sigma_{mij}^2) = E(R_i) - R_{br} \]

\[Z_i \sigma_{e_i}^2 + \beta_i \sigma_{e_i}^2 \sum_{j=1}^{n} (Z_j \beta_j) = E(R_i) - R_{br} \]

\[Z_i = \frac{E(R_i) - R_{br}}{\sigma_{e_i}^2} = \frac{\beta_i}{\sigma_{e_i}^2} \sum_{j=1}^{n} (Z_j \beta_j). \]

By multiplying the value \(\frac{E(R_i) - R_{br}}{\sigma_{e_i}^2}\) with \(\frac{\beta_i}{\sigma_{e_i}^2}\), obtained:

\[Z_i = \frac{E(R_i) - R_{br}}{\sigma_{e_i}^2} \beta_i - \frac{\beta_i \sigma_{mij}}{\sigma_{e_i}^2} \sum_{j=1}^{n} \frac{E(R_j) - R_{br}}{\sigma_{e_j}^2} \frac{\beta_j}{\sigma_{e_j}^2} \]

\[Z_i = \frac{\beta_i}{\sigma_{e_i}^2} \left(\frac{E(R_i) - R_{br}}{\sigma_{e_i}^2} - \frac{\beta_i \sigma_{mij}}{\sigma_{e_i}^2} \sum_{j=1}^{n} \frac{E(R_j) - R_{br}}{\sigma_{e_j}^2} \frac{\beta_j}{\sigma_{e_j}^2} \right) \]

\[Z_i = \frac{\beta_i}{\sigma_{e_i}^2} \left(\frac{E(R_i) - R_{br}}{\sigma_{e_i}^2} - \frac{\beta_i \sigma_{mij}}{\sigma_{e_i}^2} \sum_{j=1}^{n} \frac{E(R_j) - R_{br}}{\sigma_{e_j}^2} \frac{\beta_j}{\sigma_{e_j}^2} \right) \]

\[Z_i = \frac{\beta_i}{\sigma_{e_i}^2} (ERB_i - C^*) \]

(3.21)

Where \(ERB_i = \frac{E(R_i) - R_{br}}{\beta_i} \) and \(C^* = \frac{\sigma_m^2 \sum_{i=1}^{n} E(R_i) - R_{br} \beta_i}{1 + \sigma_m^2 \sum_{i=1}^{n} \sigma_{e_i}^2 \frac{\beta_i}{\sigma_{e_i}^2}} \) with

\[C^* = \max \{C_i\}_{i=1}^{n}. \]

Excess return is defined as the difference between the expected return value and the risk-free asset return. Excess return to Beta (ERB) is a measure of the excess return relative to a unit of risk that can not be diversified and measured by Beta. Furthermore, if \(C^* \) is the \(\max \{C_i\}_{i=1}^{n} \), it can be concluded that the stock with \(ERB_i \geq C^* \) is the stock to be included in the optimal portfolio. This condition is done so that \(Z_i \) is positive so no short sale occurs. So \(C^* \) is called cut off point.

The total fund to be invested by one unit or \(\sum_{i=1}^{n} w_i = 1 \), then the proportion of funds to be invested to each company as follows:

\[w_i = \frac{\psi w_i}{\sum_{i=1}^{n} \psi w_i} = \frac{\psi w_i}{\sum_{i=1}^{n} \psi w_i} = \frac{Z_i}{\sum_{i=1}^{n} Z_i} \]

(3.22)

M-V CRITERION

A portfolio is said to dominate portfolio \(B \) if the expected return of portfolio \(A \) is greater than that of portfolio \(B \) and the standard deviation of portfolio \(A \) is less than the standard deviation of portfolio \(B \). The equation can be written as follows \([1]\): \(E(R_A) \geq E(R_B) \) and \(\sigma_A \leq \sigma_B \)

(3.23)

IV. APPLICATION MODEL

In this research comparing optimal portfolio formation with Single Index Model and Markowitz by taking the same level of expected return value. The first step is to determine the optimal portfolio with a single index Model that generates the proportion of fund, expected return and risk of portfolio. Furthermore the determination of the optimal portfolio with the Markowitz Model is done by minimizing the variance and taking the same expected return rate as the result of Single Index Model. The last step, compare the results from both Models with M-V Criterion.

DATA

Companies that entered into the Jakarta Islamic Index (JII) amounted to 30 companies. In this study only companies consistently listed in the Jakarta Islamic Index (JII) for four periods are December 2014-May 2015, June 2015-November 2015, December 2015-May 2016 and June 2016-November 2016 periods. Are as follows:

Astra Agro Lestari Tbk. (AALI)
Adaro Energi Tbk. (ADRO)
Astra International Tbk. (AASI)
Astra International Tbk. (SILO)
PP London Sumatra (AALII)
Perusahaan Gas Negara (Persero) Tbk. (PGAS)
PP Persero (PTPP)
Siloam International Hospitals Tbk. (SILO)
The proportion is calculated by the formula searched in equation (3.22), which is the stock to be included in the formation of optimal portfolio.

\[\sigma_{it} = \text{the expected return of portfolio} \]

\[C_1 = 0.00332 \]

3. Calculate \(\sigma_{it} \) and calculate Cut off Point \(C^* \) by previously sorting Excess Return to Beta (ERB). The results of these calculations can be seen in the following table:

<table>
<thead>
<tr>
<th>Pers.</th>
<th>ERB_i</th>
<th>(\sigma_{it})</th>
<th>(C_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILO</td>
<td>0.11971</td>
<td>0.001566</td>
<td>2.5E-06</td>
</tr>
<tr>
<td>ICBP</td>
<td>0.01967</td>
<td>0.025472</td>
<td>0.0013</td>
</tr>
<tr>
<td>INCO</td>
<td>0.01744</td>
<td>0.006812</td>
<td>0.00075</td>
</tr>
<tr>
<td>ADRO</td>
<td>0.01402</td>
<td>0.005051</td>
<td>0.00229</td>
</tr>
<tr>
<td>LSIIP</td>
<td>0.01050</td>
<td>0.002172</td>
<td>0.00259</td>
</tr>
<tr>
<td>INDIF</td>
<td>0.01023</td>
<td>0.00129</td>
<td>0.00325</td>
</tr>
<tr>
<td>UNTR</td>
<td>0.00837</td>
<td>0.002326</td>
<td>0.00348</td>
</tr>
<tr>
<td>TLKM</td>
<td>0.00483</td>
<td>0.000758</td>
<td>0.00368</td>
</tr>
<tr>
<td>ASII</td>
<td>0.00417</td>
<td>0.001325</td>
<td>0.00371</td>
</tr>
<tr>
<td>PTPP</td>
<td>0.00347</td>
<td>0.001125</td>
<td>0.00370</td>
</tr>
<tr>
<td>KLBF</td>
<td>0.00254</td>
<td>0.001431</td>
<td>0.00361</td>
</tr>
<tr>
<td>UNVR</td>
<td>0.00217</td>
<td>0.001041</td>
<td>0.00350</td>
</tr>
<tr>
<td>ASRI</td>
<td>0.00141</td>
<td>0.001628</td>
<td>0.00343</td>
</tr>
<tr>
<td>AKRA</td>
<td>0.00112</td>
<td>0.001709</td>
<td>0.00333</td>
</tr>
<tr>
<td>AALI</td>
<td>0.00022</td>
<td>0.002852</td>
<td>0.00332</td>
</tr>
</tbody>
</table>

Based on the table, it can be seen the value \(C^* = 0.003714 \), so that shares that have value \(\text{ERB}_t \geq C^* \) is the stock to be included in the formation of optimal portfolio. Of the 15 JII companies, nine companies are included in the optimal portfolio, namely SILO, ICBP, INCO, ADRO, LSIIP, INDIF, UNTR, TLKM and ASII.

The expected return of portfolio and the risk of portfolio (weekly) based on the Single Index Model as follows:

\[E(R_p) = 1.293944\% \]

\[\sigma_p^2 = 0.331829\% \]

Markowitz Model in the Formation of JII’s Optimal Stock Portfolio

Based on the description of the data that has been done in the previous sections, the stock data entered into the candidate for optimal portfolio formation is the shares that entered in JII for four periods and the stock having the expected return value which is above the risk free asset. Suppose that with the same expected return rate with Single Index Model that is equal to 1.293944% per week and used the program assistance LINGO 11.0 to solve the optimization problem (3.1), output as follows:
LINGO 11.0 was obtained nine companies are included in the optimal portfolio, with INCO proportion of 12.1295%, INDF of 28.9665% ICBP of 3.3240%, ASII of 0.5054%, ADRO of 23.2835%, TLKM of 17.6759%, SILO of 5.0741%, PTPP of 4.3727% and LSIP 3.8496%. The expected return of portfolio (\(E(R_p)\)) and the portfolio variance \(\sigma_p^2\) (weekly) based on the Single Index Model as follows:

\[E(R_p) : 1.293944\% \quad \sigma_p^2 : 0.0973\%

Comparison Based M-V Criterion

The comparison of optimal portfolio formation between Markowitz and Single Index model using M-V Criterion on Jakarta Islamic Index (JII) stocks in the period of December 1st, 2015-November 30th, 2016 can be seen in the following table, as follows:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>0.000000</td>
</tr>
<tr>
<td>W10</td>
<td>0.8645560E-01</td>
</tr>
<tr>
<td>W11</td>
<td>0.1472707E-01</td>
</tr>
<tr>
<td>W12</td>
<td>0.6074979E-01</td>
</tr>
<tr>
<td>W13</td>
<td>0.1767587</td>
</tr>
<tr>
<td>W14</td>
<td>0.000000</td>
</tr>
<tr>
<td>W15</td>
<td>0.000000</td>
</tr>
<tr>
<td>W2</td>
<td>0.2328383</td>
</tr>
<tr>
<td>W3</td>
<td>0.000000</td>
</tr>
<tr>
<td>W4</td>
<td>0.5684194E-02</td>
</tr>
<tr>
<td>W5</td>
<td>0.000000</td>
</tr>
<tr>
<td>W6</td>
<td>0.3209115E-01</td>
</tr>
<tr>
<td>W7</td>
<td>0.1294337</td>
</tr>
<tr>
<td>W8</td>
<td>0.2896645</td>
</tr>
<tr>
<td>W9</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Markowitz</th>
<th>Single Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected Return</td>
<td>1.2939%</td>
</tr>
<tr>
<td>Risk (St. Dev)</td>
<td>0.0973%</td>
</tr>
</tbody>
</table>

Based on the M-V Criterion, it can be concluded that the optimal portfolio formation with Markowitz Model is more dominant than the Single Index Model.

V. CONCLUSION

Based on Jakarta Islamic Index (JII) data in the period of December 1st, 2015-November 30th, 2016 Markowitz Model has a risk of 0.0973% per week and the Single Index Model has a risk of 0.3318% per week at the same expected return rate of 1.2939% per week. Based on the M-V Criterion, it can be concluded that the optimal portfolio formation with Markowitz Model is more dominant than the Single Index Model.

REFERENCES