Dashboard on Associate Performance (DAP) – 2013-14

Shilpa Malik¹, Pratima Sharma²
¹Computer Science & Engineering, INDIA
²Computer Science & Engineering, INDIA

ABSTRACT
Here we are going to discuss regarding different aspects designing of dashboard. In a team of 20 people working on multiple technologies, it is required to keep track of the resources as well as the project they are working on. There are a number of tools available to keeping track of the project like MS project, project management guide, etc. but there is no tool or system available to track the resources working on that project, their output, improvement areas, etc. The Dashboard is a small tool/system which enables a manager or a Lead to check when the associate is available, his planned and unplanned leaves, his tardiness when he is arriving to office and when he is leaving, number of projects/requests handled, with what quality did he delivered that, etc.

Keywords—Dashboard, performance, monitoring.

I. INTRODUCTION
Dashboards often provide at-a-glance views of KPIs (key performance indicators) relevant to a particular objective or business process (Human resources, Technology sector, etc). The term dashboard originates from the automobile dashboard where drivers monitor the major functions at a glance via the instrument cluster. Dashboards give signs about a business letting the user know something is wrong or something is right. The corporate world has tried for years to come up with a solution that would tell them if their business needed maintenance or if the temperature of their business was running above normal. Dashboards typically are limited to show summaries, key trends, comparisons, and exceptions. There are four Key elements to a good dashboard:

1. Simple, communicates easily
2. Minimum distractions it could cause confusion
3. Supports organized business with meaning and useful data
4. Applies human visual perception to visual presentation of information

In simple words, A Dashboard is An easy to read, often single page, real-time user interface, showing a graphical presentation of the current status (snapshot) and historical trends of an organization’s key performance indicators (KPIs) to enable instantaneous and informed decisions to be made at a glance.

Dashboards can be broken down according to role and are either strategic, analytical, operational, or informational. Strategic dashboards support managers at any level in an organization, and provide the quick overview that decision makers need to monitor the health and opportunities of the business. Dashboards of this type focus on high level measures of performance, and forecasts. Strategic dashboards benefit from static snapshots of data (daily, weekly, monthly, and quarterly) that are not constantly changing from one moment to the next. Dashboards for analytical purposes often include more context, comparisons, and history, along with subtler performance evaluators. Analytical dashboards typically support interactions with the data, such as drilling down into the underlying details. Dashboards for monitoring operations are often designed differently from those that support strategic decision making or data analysis and often require monitoring of activities and events that are constantly changing and might require attention and response at a moment's notice.

II. WHAT IS SO HARD ABOUT DESIGNING DASHBOARDS

I spend a lot of time to understand how to find out the performance of the person in the organisation in the form of graphs—a skill set that is not common, despite the huge production of graphs in organization today. The type of graphical communication that is typically required in organisation is not difficult to learn how to do, but it doesn’t come naturally. Designing individual graphs is simple compared to designing entire dashboards. Trying to get all that information on a single screen in a way that doesn’t end up looking like a cluttered mess isn’t easy. If you think it is, chances are you haven’t actually tried to do it.

When designing a dashboard, you cannot put the pieces of information together in any old way that they seem to fit. If a dashboard isn’t organized with appropriate placement of information based on importance and desired viewing sequence, along with visual design that segregates data into meaningful groups without fragmenting it into a confusing labyrinth, the result is a cluttered mess. The goal is not simply to make
the dashboard look good, but to arrange the data in a manner that fits the way it’s used. The most important data ought to be prominent. Data that requires immediate attention ought to stand out. Data that should be compared ought to be arranged and visually designed to encourage comparisons.

Notice on the dashboard below that the most prominent position the top left used to display the vendor’s logo and navigational controls. What a waste of prime real estate! As you scan down the screen, the next information you see is a meter that presents the average order size. It’s possible that average order size might be someone’s primary interest, but unlikely that out of all the information that appears on this dashboard, this is the most important. Notice also that the line graph in the top center position displays the historical trend of order size, which logically relates to the average order size data that appears in the meter on the left, so why isn’t it next to the meter so their relationship can be easily seen? This dashboard lacks an appropriate visual balance based on the nature and importance of the data.

III. PRIOR APPROACH

The approach allows the developer to focus on the dashboard functionality, and relieves her from the burden of the user interface development experience[4]. The benefits of model-driven dashboard development include the graphical representation and easy manipulation of the solution, the error free code generation, and the ability to capture the changes in business reporting processes quickly and cost effectively. To the best of our knowledge, this is the first comprehensive approach for model-driven dashboard design, and we demonstrate its application to a real-world problem. The contributions of this paper can be summarized as follows.

• We describe a framework for model-driven dashboard design. The models we employ cover the many facets of this process, that is, the data to be displayed, the users of the system, the roles and access privileges of each user, the content of each dashboard page view, and the navigation among those views.

• The method we propose is complementary to business process and business performance modeling, and extends such models to provide a seamless experience.

• Our framework enables the automated generation of all the code necessary for the deployment of the dashboard. Therefore, it removes the burden of tedious programming, and it significantly reduces the time required for delivering the solution. Furthermore, making changes to the dashboard design is painless, since these changes only have to be made in the high level models, and then the new code is automatically regenerated.

• Finally, we validate our approach using a real-world scenario. We discuss our experiences from applying the proposed method to a real problem, and demonstrate the benefits of our technique with regards to development time and flexibility of the solution. The rest of this paper is organized as follows. We review the relevant literature in and we discuss some necessary background material. We describe the main part of our work, where we present in detail the models and the process we employ in our framework, we present a case study, where we apply our technique to a real-world problem, and we conclude protected from complexity and from potential abuse or misuse of the system. However this approach does tend to offer “vanilla” caching for all clients and their resources, i.e., browsers use the same cache path (the path from client to object) for all resources and the same consistency protocol is provided for every resource [9].

IV. OUR APPROACH

The design of each dashboard is driven by the business and their needs and culture. What may work for one business may not work for another. There are general guidelines that are available when initially developing the tool or when looking to improve current performance metrics. Planning and researching a good design is crucial for dashboards. A good information design will clearly communicate key information to users and makes supporting information easily accessible.

In organization, as explained earlier the data is pulled from Lotus Notes which is an IBM product. The associate Data is kept in the team’s Database and script is run on that. Mapping will be done using XML and excel (VB script).

1. Input will be taken from xml
2. Excel will show a table like one shown with the fields listed in the future state
3. Coding is being done in VB script

Comparison charts helps in determining the gap in the process or a team, like the example shown below shows the target vs current performance. For example, the target Quality of the team to deliver the output is 99% whereas the current performance stands at 98%. Month wise it will show the target versus actual.

V. CONCLUSION

In this study, we have understand an efficient and effective dashboard design technique. We extend the business performance modeling framework by providing a number of new models that enable the process of
dashboard design. Our approach renders the dashboard design and deployment process less time consuming and less cumbersome. It leads to automated code generation, and allows fast and easy integration of design changes in the final solution.

We applied the proposed technique for designing and deploying a dashboard for a real-world business, and the results of this experiment demonstrate the feasibility and effectiveness of our approach. We observed a significant reduction in terms of required development time when compared to a more traditional dashboard deployment process.

REFERENCES


[4] Kumar Rathur, A; Ahmad, R; Sinha, M. K; Sangal, R; “Dashboard: An Integration and testing platform based on backboard architecture for NLP Application”, Aug 2010


[6] Presentation Dr. David C. Oehler Director of Assessment, Information and Analysis, “Dashboards as a Data Management Tool” Northwest Missouri State University


