Influence of Welding Parameters on Bead Geometry in Stainless Steel Cladding using Submerged Arc Welding Process

Avtar Singh¹, Taljeet Singh², Dilpreet Singh³, Gurkirat Singh⁴

¹²³⁴Department of Mechanical Engineering, Chandigarh Engineering College, Landran, Mohali, INDIA

ABSTRACT

Weld cladding is being employed increasingly in process & power industries because of its high reliability and has been employed to enhance the life of engineering component that have to work under highly corrosive environment.

The bead geometry is an important considerable in cladding operation which is influenced by direct and indirect welding parameters eg. Bead width governs the number of passes required to sweep the entire surface area in a particular cladding situation height of reinforcement governs the amount of metal built up. The effect of welding parameter on bead geometry of 12 mm thick mild steel plates (SA-516 Grade 60) used for fabrication of boilers and pressure vessels were cladded in flat position with Stainless steel ADOR make auto melt 309L wire as the filler & ADOR made S33 granular flux using SAW process.

In present work, the influence of welding parameters on bead geometry and dilution in stainless steel cladding has been investigated. Mathematical models were developed from the data generated using two level fraction factorial design. Eight combinations & two set of responses parameters are designed with different combinations of (SAW) welding parameters. The effect of selected welding parameters [welding current(I), open circuit voltage(V), welding speed(S) & nozzle to plate distance (N)] on the dilution and bead geometry [penetration(P), bead width(W), reinforcement(R)] have been investigated. The effect of welding parameters on response parameters has been drawn.

Keywords— Mild Steel (SA-516 Grade 60), 309L Stainless steel weld wire, S33 Granular flux, SAW Process, Microhardness, Bead Geometry & Dilution

I. INTRODUCTION

The modern submerged arc welding (SAW) is an arc welding process, in which one or more arc(s), formed between one or more bare wire electrodes and the work piece, provides the heat for the coalescence. In submerged arc welding, shielding of the weld arc is done using a granular flux which is fed into the weld zone using a hopper. This flux completely covers the molten zone and prevents spatter and flashing. It also acts as a thermal insulator, permitting deeper heat penetration. The process is obviously limited to welding in a horizontal position and is widely used for relatively thick sheet or plate steel, welding in either automatic or semiautomatic configuration. In fully automatic welding, the flux is fed mechanically to the joint ahead of the arc, the wire is fed automatically to the welding head, the arc length is automatically controlled and the traverse of the arc or the working is also mechanised. In semi automatic version, the wire feed and the arc length is controlled automatic, while the welder moves the welding gun, usually equipped with flux feeding device, along the joint at a controlled rate of travel. Flux feed may be by gravity flow, through a nozzle concentric with the electrode from a small hopper a top gun, or it may be through a concentric nozzle connected to an air pressurized flux hopper [1]. Power sources for submerged arc welding are designed for high current and duty cycles, e.g. 800-1600 A, 44 V and 100 % duty cycle. Both AC and DC welding may be used [2].

Submerged arc welding has a high metal deposition rate of order of 27 to 45 kg/ hr. The electrode melts to form weld puddle while flux completely envelopes the action. That portion of flux adjacent to the electrode tip and the puddle melts, forming a slag layer that refines the weld and excludes air. Overall, SAW is a welding process with high efficiency, high deposition rates and a reduced dependence upon highly skilled personnel, making it an attractive process for in-house pipe welding at steel mills.

Principle of operation

In the process of Submerged Arc Welding, an arc is maintained between a continuously fed bare wire electrode and the work piece underneath a blanket of fusible granular flux which shields the weld metal and the arc from the atmosphere as shown in Figure 1.2 The high deposition rates obtained in this automated process make it a very economical method of metal joining and cladding.

The current density in SAW process is higher than other processes, due to high current density the heat input is high and this higher heat input results in higher deposition rate and higher deposition rate produce bigger
weld bead. However, during SAW as in other flux shielded processes, chemical reactions take place between the molten flux and the metal. The reactions between slag and metal result in compositional changes, affecting the structure and properties of the weldment. Thus, in order to control the mechanical properties of the weld metal and to match them with those of the work piece, it is necessary to estimate the extent of interaction between the slag and the metal [4].

Cladding

Weld surfacing is a technique of depositing a layer of material onto the surface of a component to make it more resistant to corrosion, wear or high temperature than the parent metal or substrate [12]. Weld surfacing techniques can be classified according to properties conferred by the surface coating. They are called cladding, hardfacing, build up and buttering to achieve corrosion resistance, wear resistance, dimensional control and metallurgical needs [13]. In Cladding a thick layer of some weld metal like stainless steel is laid onto a low alloy steel plate. Cladding must also resist localized corrosion such as pitting, crevice corrosion, inter granular corrosion and stress corrosion cracking. The main advantage of cladding is the creation of low cost corrosion-resistant surface but it also combines a high strength material like low alloy steel for the backing with corrosion resistant material like stainless steel. Weld cladding is employed for the fabrication of new components for use in chemical and fertilizer plants, nuclear power plants, pressure vessels, agricultural machines and even aircraft missile components. Also it has been used widely for maintenance and repair of railway rolling stock as well as points and junctions, earth moving and agricultural machinery, large gear wheels, conveyor shafts, chutes, turbine components and innumerable other components. Other applications of cladding includes the production of vessels for chemical, paper mill, petroleum refining and nuclear power plant. It is also extensively used in food processing and packaging plants to avoid the corrosive action of foods. Cladding is also applied to increase the life of components operating under conditions of corrosion and wear by cladding and to reduce their cost by repeated rebuilding [12-15].

Weld cladding is carried out by various techniques such as SMAW, SAW, GTAW, FCAW, ESW etc but automated submerged arc welding is the popularly employed technique due to its high quality and reliability. Submerged arc cladding is employed by various techniques such as single and multiple wires, single and multiple strips, additional powder filler metal, additional hot and cold filler wire, with or without oscillation of the electrode. Also by the proper selection of process control parameters, single wire cladding becomes one of the cost effective means of depositing a corrosion resistant overlay. However, for use of submerged arc welding in its automatic mode, the process control parameters are required to feed to the system according to some mathematical formulation to achieve the desired results.

The present work

In the present work, mathematical model have been developed using two level factorial technique to predict the bead geometry (penetration, reinforcement, bead width and dilution) of the cladding layers, as affected by process parameters (welding current, open circuit voltage, welding speed, nozzle to plate distance), during Stainless Steel cladding of 309L SS wire (3.2 mm diameter) onto mild steel substrate (SA-516, Grade 60) commonly used for building boilers, pressure vessels & reactors.

The main and interaction effects of the control factors on dilution and bead geometry have been presented in graphical form, which is more useful in selecting the process parameters to achieve the desired quality of the weld overlay. The effects of heat input on to the microhardness of the deposited metal have also been studied.

II. DESIGN OF EXPERIMENT

Design of experiment is a technique for studying any situation that involves a response that varies as a function of one or more independent variable. Most researchers recognize the value of experimental design as an efficient means of collecting data. These data serve to refine the hypothesized models of the measurement process and suggest further experiments. Design of experiment is specifically designed to address complex problem where more than one variable may affect a response and two or more variable may interact with each other.

For predicting bead geometry & shape relationships and for developing empirical models, it is essential to generate data by conducting experiments to the corresponding actual condition of welding. The design of experiment is a procedure of selecting the number of trials and conditions running them, essential and sufficient for solving a problem that has been set with the required precision.

Factorial design experiment is an experiment in which all possible combination of level of the factor is realized. A factorial experiment can be either full factorial or fractional factorial. A full factorial design of experiment is generally represented by 2^k, (k is the number of factors) where all factor settings are chosen such that all possible combinations are tested. But as the number of factors (k) is increased, the number of required trials (2^k) is also increased geometrically. Since, geometrically increased number of trials is mainly due to estimate the increased number of higher order interactions, which in most of the cases do not affect the response significantly. For the current study fractional factorial experiment technique with 4 factors & 2 levels for each factor has been employed. Thereby the total number of experiments are reduced to $\left(2^{4-1}\right) = 8$ eight trials, for each set of experiments.

Selection of Design (Identifying Critical Process Control Variables)

For welding joints free from defects such as
cracking, porosity and under cut. Identification of correct welding condition is important. Welding conditions affect bead geometry & dilution. Among the many parameters in submerged arc welding, some important ones like open circuit voltage, welding current, welding speed, nozzle to plate distance were identified for investigation. Table 1 gives a list of these variables along with their units & symbols used for them. All the remaining variables were kept constant.

Table 1: Welding parameters taken As process variables

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Factor</th>
<th>Units</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Welding Current</td>
<td>Amper e</td>
<td>I</td>
</tr>
<tr>
<td>2</td>
<td>Open circuit Voltage</td>
<td>Volt</td>
<td>V</td>
</tr>
<tr>
<td>3</td>
<td>Welding Speed</td>
<td>mm/minute</td>
<td>S</td>
</tr>
<tr>
<td>4</td>
<td>Nozzle to plate Distance</td>
<td>Mm</td>
<td>N</td>
</tr>
</tbody>
</table>

Selection of Two Level of Welding Variables

The working range covering the lowest and the highest level of the direct welding parameters was carefully selected by carrying out extensive trial runs. The qualifying criteria for welding parameters were based on the factors like stable arc, surface appearance of the bead deposited, visual defects, pock marks and porosity. The range covering the lowest and the highest level of the direct welding parameters was carefully selected so as to maintain the equilibrium between the welding wire feed rate and burn off rate. The direct and indirect parameters except under consideration were kept constant. The upper level was coded as (+1) and the lower level as (-1) or simply (+) and (-).

Development of Design Matrix

The experiments were conducted for all possible combination of parameters levels and these combinations were then written in form of a table, where the rows correspond to different trials and column to the level of parameters from a design matrix. The design matrix as shown in Table 2 was developed to conduct eight trial runs \(2^{4-1}=8\) of two level half factorial design. The first three columns were generated by confounding the main effect of parameters 4 with the three parameters interaction effects. The confounding patterns were expressed as 4=123 on the top of 4th column in design matrix.

The procedures of designing such a matrix are dealt [16].

III. EXPERIMENTATION

To carry out this study weld deposits (beads) were deposited on boiler grade mild steel plates (SA-516 Grade 60) using ADOR make Auto melt 309L Stainless steel weld wire of 3.2 mm diameter, conforming to AWS SFA 5.9 specifications & ADOR made S33 granular flux using automatic submerged arc welding machine., as per the design of experiment (fractional factorial).

The most widely recognized welding parameters (for SAW) namely welding current (I), open circuit voltage (V), welding speed (S), nozzle to plate distance (N) were taken as process parameters for the current study. Extensive trial runs were carried out to find out the working range of these input parameters. After finalization the working range of these process parameters the weld beads were deposited on the weld plates as per the design matrix. The experimental runs were conducted at random order to eliminate any systematic error. The complete sets of eight trials were repeated thrice for the sake of determining the variance of parameters and variance of adequacy for the model.

Base material

Mild steel plates of SA-516 Grade 60, having size 150x75x12 mm are used for carrying out this investigation. This material is selected because it is most widely used for fabrication of boiler and pressure vessel in the industry. The plates are cut into required length with the help of a power hacksaw. The dimensions of base plate are as shown in Fig. 1. The composition of the base plate is shown in Table 3.

Fig. 1: Dimensions of plate used for Experimentation (in mm)
Identify the process parameters

Extensive trial runs were carried out to find out the working range of input process parameters. On the basis of these trial runs the process parameters, given in table 4.3, were selected.

The independently controllable process parameters affecting bead geometry were identified to enable the carrying out the experimental work and the development of mathematical models. They were welding current (I), open circuit voltage (V), travel speed (S) and nozzle to plate distance (N). Trial runs were carried out by varying one of the process parameters while keeping the rest at constant value [16]. The working range was decided upon by inspecting the bead for a smooth appearance without any visible defects such as surface porosity, under cut, pock marks. The upper limit of a factor was coded as (+1) and lower limit as (-1) or simply (+) and (-) respectively. The decided values of process parameters with their units and notations are given below.

Table 4: Process parameters and their levels

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Parameters</th>
<th>Units</th>
<th>Symbol</th>
<th>Low Level (-)</th>
<th>High Level (+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Current</td>
<td>Amp</td>
<td>A</td>
<td>330</td>
<td>450</td>
</tr>
<tr>
<td>2</td>
<td>Voltage</td>
<td>V</td>
<td>V</td>
<td>30</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>Welding Speed</td>
<td>mm/min</td>
<td>S</td>
<td>226</td>
<td>550</td>
</tr>
<tr>
<td>4</td>
<td>Nozzle to plate distance</td>
<td>Mn</td>
<td>N</td>
<td>18</td>
<td>22</td>
</tr>
</tbody>
</table>

Conducting the experiments as per the design matrix

Beads on mild steel plates having size 150×75×12 mm were deposited, conducting the experiment as per the design matrix. Electrode positive reverse polarity was used. The complete sets of eight trials were repeated thrice for the sake of determining the variance of parameters and variance of adequacy for the model each. All the plates (both sets) obtained by conducting the experiment have been shown in Fig. 2.

Preparation of the specimens

The specimens removed from each plate were ground and polished using standard polishing method was prepared by standard metallographic methods. After polishing, these specimens were etched.

Measuring the bead geometry and dilution of each specimen

The bead geometry of each specimen, prepared above, consisting of the bead width (W), depth of penetration (P) & reinforcement (R) as shown in Fig. 4.4 was measured using stereo zoom microscope at 10x magnifications.

Dilution of weld bead

\[\text{DILUTION} = \left[\frac{\text{Area of Penetration}}{\text{Area of Reinforcement + Area of Penetration}} \right] \times 100 \]
IV. RESULTS AND DISCUSSION

In the present study, the effect of Process parameters (Current, Open Circuit Voltage, Welding Speed and Nozzle to plate Distance) on bead geometry (Penetration, bead width, reinforcement and dilution) of mild steel plates have been investigated.

Bead Geometry of weldment is depends on the heat input by the welding arc to the weldment. Heat input is controlled by the three variables welding current, open circuit voltage, travel speed. With the higher heat input the Bead Width and Reinforcement is higher. The effect of Process parameters on Bead Geometry was investigated. The individual effect of process parameters on Bead Geometry was investigated by the application of DOE (Fractional factorial design) tool. The result and conclusion is described below.

Effect of welding parameters on Penetration (P)

The regression equations obtained for penetration by using multiple regressions are given below:

\[
\text{Penetration} = 3.01 + 0.44(I) + 0.17(V) - 0.51(S) - 0.028(N) + 0.044(I)(V) + 0.21(I)(S)
\]

Effect of welding current on penetration (P)

It is observed that penetration increased from 2.57 to 3.4 mm with increase in welding current from 350 to 450 amperes. It is due to the fact that current density increases with increase in welding current as a result higher melting of the electrode. The melting of electrode is due to arc heat and resistance heat. With an increase in welding current, there is a linear increase in arc heat, while the resistance heat increases exponentially which are responsible for electrode melting, resulting increased depth of penetration.

Effect of open circuit voltage on penetration (P)

It can be observed that penetration increases linearly from 2.77 to 3.13 mm with an increase in arc voltage from 30 to 38 volt. This increase in penetration with increase in voltage is insignificant as compared to the effect of current.

Effect of welding speed on penetration (P)

The effect of arc welding speed on depth of penetration in mm. It can be observed that penetration decreases from 3.51 to 2.48 mm with an increase in welding speed from 236 to 550 mm/min. This decrease in penetration is due to the fact of lower heat input per unit length of the weld.

Interactive effect of welding current & open circuit voltage on penetration (P)

The rise in penetration is higher at the arc voltage 38 volt and rise in penetration is lower at arc voltage 30 volt for the current vary from 350 to 450 amperes. Penetration increases from 2.62 mm to 3.58 mm when welding current increase from lower to higher level and arc voltage at higher level. In the same way penetration increases from 2.55 mm to 3.20 mm when current increase from lower to higher level and arc voltage is at lower level.

Interactive effect of current and nozzle to plate distance on penetration (P)

The rise in penetration is steeper at higher nozzle to plate distance than the lower nozzle to plate distance for the current vary from 350 to 450 amperes. Penetration increases from 2.45 to 3.55 mm when current increases from lower to higher level and nozzle to plate distance is at higher level. In the same way penetration increases from 2.60 to 3.25 mm when current increases from lower to higher level and nozzle to plate distance is at lower level.

Effect of welding parameters on bead width (W)

The regression equations obtained for bead width by using multiple regressions are given below:

\[
\text{Bead width} = 15.48 + 1.93(I) - 1.56(V) - 2.10(S) + 0.56(N) - 0.38(I)(V) - 0.11(I)(S)
\]

Effect of welding current on bead width (W)

Bead width increases from 13.7 to 17.01 mm with increase in welding current from 350 to 450 amperes, as shown in Fig. 5.8. This effect is due to increase in heat input and the weight of the weld metal deposited. These factors contribute to increase in weld pool size and consequently insignificant increase the bead width.

Effect of open circuit voltage on bead width (W)

It can be attributed to the increase in arc length with the increase in open circuit voltage, which in turn results in spreading of the arc cone at its base which further results in more melting of work piece instead of penetrating the plate. This extension in bead width causes corresponding reduction in penetration and reinforcement. In fact excessive increase in voltage can result in nearly flat bead. Fig. 5.10 shows the effect of open circuit voltage on bead width. It is apparent that bead width increases with the increase in open circuit voltage. Bead width(W) increases from 13.93 to 16.87 mm with the increase in open circuit voltage from 30 to 38 volts.

Effect of welding speed on bead width (W)

The weld bead width decreases steadily with the increase in welding speed. The bead width decreases from 17.28 to 13.48 mm with increase in welding speed from 236 to 550 mm/min. This negative effect of welding speed on bead width (W) is due to the fact that
Effect of welding parameters on reinforcement (R)

The regression equations obtained for reinforcement by using multiple regressions are given below:

\[
\text{Reinforcement} = 2.73 + 0.28(I) + 0.15(V) - 7.02(S) - 7.50E-06(D) + 0.036(I) + 0.021(V) + 0.021(S)
\]

Effect of welding current & open circuit voltage on bead width (W)

It is observed that bead width increases with increase in welding current at any level of arc voltage but rate of increase is high at higher voltage. It is due to the fact that arc length increases with increase of arc voltage as a result arc strikes on larger surface area resulting in increase in bead width.

Interactive effect of welding current and welding speed on bead width (W)

It is observed that bead width increases with increase in welding current when a welding speed at lower level and bead with increases steeper when welding current increases but the welding speed at higher level.

Effect of welding parameters on reinforcement (R)

The regression equations obtained for reinforcement by using multiple regressions are:

\[
\text{Reinforcement} = 2.73 + 0.28(I) + 0.15(V) - 7.02(S) - 7.50E-06(D) + 0.036(I) + 0.021(V) + 0.021(S)
\]

Effect of welding current on reinforcement (R)

It is observed that reinforcement decreases from 3.45 to 2.01 mm as the current changes from 350 to 450 amperes. This increase in reinforcement due to the fact that with increase in welding current gives enhanced line power per unit length of the weld bead and higher current density, causing large volume of base material to melt and hence higher reinforcement and penetration.

Effect of open circuit voltage on reinforcement

It has been observed that reinforcement increases from 2.57 to 2.83 mm as the open circuit voltage vary from 30 to 38 volts.

Effect of welding speed on reinforcement (R)

The reinforcement decreases from 3.45 to 2.01 mm with increase in welding speed from 236 to 550 mm/min. It is due to the fact that with increase in welding speed heat input per unit length of weld decreased, so as a result reinforcement decreases and with this penetration also decreases.

Interactive effect of current and welding speed on reinforcement (R)

It has been observed that reinforcement increases steadily with increase in welding current when a welding speed at higher level and reinforcement increases steeper when welding current increases and the welding speed at lower level. This is due to the fact heat input per unit length of weld metal.

Effect of welding parameters on Dilution (D)

The regression equations obtained for dilution by using multiple regressions are given below:

\[
\text{Dilution} = 35.97 + 2.53(I) + 1.19(V) - 4.64(S) - 0.079(D) - 0.41(I) - 0.15\]

Effect of welding current on Dilution (D)

It is observed that Dilution decreases from 33.8 % to 38.01 % with increase in welding current from 350 to 450 amperes. It is due to the fact that current density increases with increase in welding current as a result higher melting of the electrode. Hence due to high heat input depth of penetration is increased and dilution also increased with increase depth of penetration.

Effect of open circuit voltage on Dilution (D)

It can be observed that Dilution increases linearly from 34.87 to 37.03 % with an increase in arc voltage from 30 to 38 volt.

Effect of welding speed on dilution (D)

It can be observed that dilution decreases from 40.5 to 31.4 % with an increase in arc welding speed from 236 to 550 mm/min. This decrease in dilution is due to the fact of lower heat input per unit length of the weld.

Interactive effect of welding current & open circuit voltage on Dilution (D)

Rise in dilution is higher at the arc voltage 38 volt and rise in dilution is lower at arc voltage 30 volt for the current vary from 350 to 450 ampere. Dilution increases from 35.2 to 38.8 % when welding current increase from lower to higher level and arc voltage at higher level. In the same way dilution decreases from 32 to 37.3 % when current increase from lower to higher level and arc voltage is at lower level.

Interactive effect of welding current & Welding speed on Dilution (D)

Rise in dilution is higher at the welding speed 236 mm/min and rise in dilution is lower at welding speed 550 mm/min for the current vary from 350 to 450 ampere. Dilution increases from 29 to 33.8 % when welding current increase from lower to higher level and welding speed at higher level. In the same way dilution increases from 38.3 to 42.5 % when current increase from lower to higher level and welding speed is at lower level.

Best parameters obtained for cladding

- Penetration and dilution is minimum, when current is at 350 Amp & speed is at 550 mm/min.
- Bead width and reinforcement is maximum, when current is at 450 Amp, voltage is at 38 V & speed is at 236 mm/min.

Microhardness (VHN)

According to heat input (high, Medium and low heat input) three specimen were selected and these specimens were properly polished and etched with solution for few seconds, which was followed by investigation of microhardness. There were 2 point in weld and HAZ where micro hardness is tested.
Microhardness of HAZ is high as compare to weld metal hardness. At the high heat input, the cooling rate is slow and grain structure is coarsened and the low heat input cooling rate is fast and grain structure is fine due to this reason the HAZ of hardness is high and weld metal is low. In the different heat input, the hardness value is change in HAZ and weld metal.

V. CONCLUSION

From results, it has been observed that the process parameters are directly affecting the bead geometry,

- Penetration increases 0.32 times as well as current increases 350 to 450 Amp.
- Penetration decreases 0.09 times with increase in nozzle to plate distance 18 mm to 22 mm.
- Reinforcement increases 1.44 times as well as current increases 350 to 450 Amp.
- Bead width decreases 0.21 times with increase in welding speed 236 mm/min to 550 mm/min.
- Dilution increases 0.12 times as well as current increases 350 to 450 Amp.
- Dilution decreases 0.26 times with increase in nozzle to plate distance 18 mm to 22 mm.
- The value of dilution is least when all the factors (open circuit voltage, welding speed, nozzle to plate distance) are at maximum value but current is at minimum value (350 ampere) as well as when factors (welding current, welding speed, open circuit voltage) are at minimum value and nozzle to plate distance is at maximum value (22 mm).
- The value of dilution increases with increase in voltage and current when speed is at minimum value (236 mm/min). This is due to the heat input to the system increasing when the welding speed decreases, hence melting of more base metals resulting in more dilution.
- The reduction in microhardness is lower at the 550 mm/min welding speed and increment in microhardness is higher at 236 mm/min welding speed for the current vary from 350 to 450 ampere. Micro hardness increase by 2.84 % in weld and reduce 4.08 % in HAZ, when welding current increase from 350 Amp to 450 Amp and welding speed is at 236 mm/min. In the same way microhardness increases by 2.93 % in weld and decreases 4.26 % in HAZ when current increase from 350 Amp to 450 Amp and welding speed is at 550 mm/min.

REFERENCES

[16] Adler Yu. P., Markov E., Granovsky Y.V., 1975, the design of experiments to find optimal conditions. 1st

Kannan T., Murugan N., 2006, Effect of flux cored arc welding process parameters on duplex stainless steel clad quality, journals of materials processing technology, 176, pp. 230-239.

Tusek J., Suban M., 2003, High-productivity multiple-wire submerged-arc welding and cladding with metal-powder addition, journals of material processing technology, 133, pp. 207-213.
