Li-Fi - A Light Leading to Faster Technology

Sandipana Das¹, Bhavani Sankar Panda²
¹Department of Computer Science & Engineering, INDIA
²Guide, Department of Computer Science & Engineering, INDIA

ABSTRACT

Light Fidelity (Li-Fi) is a bidirectional, high speed and fully networked wireless communication technology similar to Wi-Fi. The term was coined by Harald Haas and is a form of visible light communication and a subset of optical wireless communications (OWC) and could be a complement to RF communication (Wi-Fi or Cellular network), or even a replacement in contexts of data broadcasting. It is so far measured to be about 100 times faster than some Wi-Fi implementations, reaching speeds of 224 gigabits per second. Li-Fi provides better bandwidth, efficiency, availability and security than Wi-Fi and has already achieved blisteringly high speed in the lab. By leveraging the low-cost nature of LEDs and lighting units there are many opportunities to exploit this medium, from public internet access through street lamps to auto-piloted cars that communicate through their headlights. Haas envisions a future where data for laptops, smart phones, and tablets will be transmitted through the light in a room. [1]

Keywords—LED (Light emitted diode), Wi-Fi, VLC, Li-Fi, wireless communication

I. INTRODUCTION

Transfer of data from one place to another is one of the most important day-to-day activities. The current wireless networks that connect us to the internet are very slow when multiple devices are connected. As the number of devices that access the internet increases, the fixed bandwidth available makes it more and more difficult to enjoy high data transfer rates and connect to a secure network. But, radio waves are just a small part of the spectrum available for data transfer. A solution to this problem is by the use of Li-Fi[2]. Li-Fi stands for Light-Fidelity. Li-Fi is transmission of data through illumination by taking the fiber out of fiber optics by sending data through an LED light bulb that varies in intensity faster than the human eye can follow. Li-Fi is the term some have used to label the fast and cheap wireless communication system, which is the optical version of Wi-Fi. Li-Fi uses visible light instead of Gigahertz radio waves for data transfer[6].

The term was first used in this context by Harald Haas in his TED Global talk on Visible Light Communication. “At the heart of this technology is a new generation of high brightness light-emitting diodes”, says Harald Haas from the University of Edinburgh, UK, “Very simply, if the LED is on, you transmit a digital 1, if it’s off you transmit a 0,” Haas says, “They can be switched on and off very quickly, which gives nice opportunities for transmitted data. “It is possible to encode data in the light by varying the rate at which the LEDs flicker on and off to give different strings of 1s and 0s. The LED intensity is modulated so rapidly that human eye cannot notice, so the output appears constant. More sophisticated techniques could dramatically increase VLC data rate.

II. CONSTRUCTION OF LI-FI SYSTEM

This OWC technology uses light from light-emitting diodes (LEDs) as a medium to deliver networked, mobile, high-speed communication in a similar manner to Wi-Fi. The Li-Fi market is projected to have a compound annual growth rate of 82% from 2013 to 2018 and to be worth over $6 billion per year by 2018. Visible light communications (VLC) works by switching the current to the LEDs off and on at a very high rate, too quick to be noticed by the human eye[4]. Although Li-Fi LEDs would have to be kept on to transmit data, they could be dimmed to below human visibility while still emitting enough light to carry data. The light waves cannot penetrate walls which makes a much shorter range, though more secure from hacking, relative to Wi-Fi. Direct line of sight isn't necessary for Li-Fi to transmit a signal; light reflected off the walls can achieve 70 Mbit/s.
Li-Fi has the advantage of being useful in electromagnetic sensitive areas such as in aircraft cabins, hospitals and nuclear power plants without causing electromagnetic interference[8]. Both Wi-Fi and Li-Fi transmit data over the electromagnetic spectrum, but whereas Wi-Fi utilizes radio waves, Li-Fi uses visible light. While the US Federal Communications Commission has warned of a potential spectrum crisis because Wi-Fi is close to full capacity, Li-Fi has almost no limitations on capacity. The visible light spectrum is 10,000 times larger than the entire radio frequency spectrum. Researchers have reached data rates of over 10 Gigabit/s, which is much faster than typical fast broadband in 2013. Li-Fi is expected to be ten times cheaper than Wi-Fi. Short range, low reliability and high installation costs are the potential downsides.

III. PRIOR APPROACH: VLC

Li-Fi (Light Fidelity) is a fast and cheap optical version of Wi-Fi, the technology of which is based on Visible Light Communication (VLC) [3]. VLC is a data communication medium, which uses visible light between 400 THz (780 nm) and 800 THz (375 nm) as optical carrier for data transmission and illumination. It uses fast pulses of light to transmit information wirelessly. The main components of this communication system are 1) a high brightness white LED, Which acts as a communication source and 2) a silicon photodiode which shows good response to visible wavelength region serving as the receiving element? LED can be switched on and off to generate digital strings of 1s and 0s. Data can be encoded in the light to generate a new data stream by varying the flickering rate of the LED. To be clearer, by modulating the LED light with the data signal, the LED illumination can be used as a communication source. As the flickering rate is so fast, the LED output appears constant to the human eye. A data rate of greater than 100 Mbps is possible by using high speed LEDs with appropriate multiplexing techniques. VLC data rate can be increased by parallel data transmission using LED arrays where each LED transmits a different data stream. There are reasons to prefer LED as the light source in VLC while a lot of other illumination devices like fluorescent lamp, incandescent bulb etc. are available.

IV. RECENT ADVANCEMENTS IN LI-FI

Using a standard white-light LED, researchers at the Heinrich Hertz Institute in Berlin, Germany, have reached data rates of over 500 megabytes per second. Using a pair of Casio smart phones, the technology was demonstrated at the 2012 Consumer Electronics Show in Las Vegas to exchange data using light of varying intensity given off from their screens, detectable at a distance of up to ten meters. A consortium called Li-Fi Consortium was formed in October 2011 by a group of companies and industry groups to promote high-speed optical wireless systems and overcome the limited amount of radio based wireless spectrum. According to the Li-Fi Consortium, it is possible to achieve more than 10 Gigabits per second of speed, theoretically which would allow a high-definition film to be downloaded in just 30 seconds[5]. Researchers at the University of Strathclyde in Scotland have begun the task of bringing high-speed, ubiquitous, Li-Fi technology to market.

V. COMPARISON BETWEEN LI-FI & WI-FI

Li-Fi is the name given to describe visible light communication technology applied to obtain high speed wireless communication. It derived this name by virtue of the similarity to Wi-Fi. Wi-Fi works well for general wireless coverage within buildings, and Li-Fi is ideal for high density wireless data coverage inside a confined area or room and for relieving radio interference issues.

Table I shows a comparison of transfer speed of various wireless technologies. Table II shows a comparison of various technologies that are used for connecting to the end user. Wi-Fi currently offers high data rates. The IEEE 802.11.n in most implementations provides up to 150Mbit/s although practically, very less speed is received.

<table>
<thead>
<tr>
<th>TECHNOLOGY</th>
<th>SPEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wi-Fi – IEEE 802.11n</td>
<td>150 Mbps</td>
</tr>
<tr>
<td>Bluetooth</td>
<td>3 Mbps</td>
</tr>
<tr>
<td>IrDA</td>
<td>4 Mbps</td>
</tr>
<tr>
<td>Li-Fi</td>
<td>>1 Gbps</td>
</tr>
</tbody>
</table>

Table: Comparison of Speed of Various Wireless Technologies

Li-Fi technology is based on LEDs for the transfer of data.
The transfer of the data can be with the help of all kinds of light, no matter the part of the spectrum that they belong. That is, the light can belong to the invisible, ultraviolet or the visible part of the spectrum. Also, the speed of the internet is incredibly high and you can download movies, games, music etc. in just a few minutes with the help of this technology. Also, the technology removes limitations that have been put on the user by the Wi-Fi. You no more need to be in a region that is Wi-Fi enabled to have access to the internet. You can simply stand under any form of light and surf the internet as the connection is made in case of any light presence. There cannot be anything better than this technology.

TABLE II. COMPARISON OF TECHNOLOGIES USED FOR CONNECTING TO THE END USER

<table>
<thead>
<tr>
<th>TECHNOLOGY</th>
<th>CONNECTION</th>
<th>SECURITY</th>
<th>REACH</th>
<th>IMPACT</th>
<th>COST</th>
<th>BANDWIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wi-Fi</td>
<td>Wireless-EMF</td>
<td>Good</td>
<td>Excellent</td>
<td>Unknown</td>
<td>Good</td>
<td>Limited</td>
</tr>
<tr>
<td>Hardwired</td>
<td>Cables</td>
<td>Excellent</td>
<td>Fair</td>
<td>None</td>
<td>Good</td>
<td>Limited</td>
</tr>
<tr>
<td>Li-Fi</td>
<td>Wireless-Light</td>
<td>Excellent</td>
<td>Excellent</td>
<td>None</td>
<td>Low</td>
<td>Exceptional</td>
</tr>
</tbody>
</table>

Advantages of Li-Fi

Li-Fi technology is based on LEDs or other light source for the transfer of data. The transfer of the data can be with the help of all kinds of light, no matter the part of the spectrum that they belong. That is, the light can belong to the invisible, ultraviolet or the visible part of the spectrum. Also, the speed of the communication is more than sufficient for downloading movies, games, music and all in very less time. Also, Li-Fi removes the limitations that have been put on the user by the Wi-Fi.

a) Capacity: Light has 10000 times wider bandwidth than radio waves. Also, light sources are already installed. So, Li-Fi has got better capacity and also the equipment are already available.

b) Efficiency: Data transmission using Li-Fi is very cheap. LED lights consume less energy and are highly efficient.

c) Availability: Availability is not an issue as light sources are present everywhere. There are billions of light bulbs worldwide; they just need to be replaced with LEDs for proper transmission of data.

d) Security: Light waves do not penetrate through walls. So, they can’t be intercepted and misused.

Disadvantages of Li-Fi

One of the major demerits of this technology is that the artificial light cannot penetrate into walls and other opaque materials which radio waves can do. So a Li-Fi enabled end device (through its inbuilt photo-receiver) will never be as fast and handy as a Wi-Fi enabled device in the open air. Also, another shortcoming is that it only works in direct line of sight. Still, Li-Fi could emerge as a boon to the rapidly depleting bandwidth of radio waves. And it will certainly be the first choice for accessing internet in a confined room at cheaper cost.

VI. APPLICATION OF LI-FI

For a long time, medical technology has lagged behind the rest of the wireless world. Operating rooms do not allow Wi-Fi over radiation concerns, and there is also that whole lack of dedicated spectrum. While Wi-Fi is in place in many hospitals, interference from cell phones and computers can block signals from monitoring equipment. Li-Fi solves both problems: lights are not only allowed in operating rooms, but tend to be the most glaring (pun intended) fixtures in the room. And, as Haas mentions in his TED Talk, Li-Fi has 10,000 times the spectrum of Wi-Fi, so maybe we can, I don’t know, delegate red light to priority medical data. Code Red!

Airline Wi-Fi. Ugh. Nothing says captive audience like having to pay for the "service" of dial-up speed Wi-Fi on the plane. And don’t get me started on the pricing. The best I’ve heard so far is that passengers will "soon" be offered a "high-speed like" connection on some airlines. United is planning on speeds as high as 9.8 Mbps per plane.

Wi-Fi and many other radiation types are bad for sensitive areas. Like those surrounding power plants. But power plants need fast, inter-connected data systems to monitor things like demand, grid integrity and (in nuclear plants) core temperature. The savings from proper monitoring at a single power plant can add up to hundreds of thousands of dollars. Li-Fi could offer safe, abundant connectivity for all areas of these sensitive locations. Not only would this save money related to currently implemented solutions, but the draw on a power plant’s own reserves could be lessened if they haven’t yet converted to LED lighting.

Underwater ROVs, those favourite toys of treasure seekers and James Cameron, operate from large cables that supply their power and allow them to receive signals from their pilots above. ROVs work great, except when the tether isn’t long enough to explore an area, or when it gets stuck on something. If their wires were cut and replaced with light — say from a submerged, high-powered lamp — then they would be much freer to explore. They could also use their headlamps to communicate with each other, processing data autonomously and referring findings periodically back to...
the surface, all the while obtaining their next batch of orders.

Say there’s an earthquake in New York. Or a hurricane. Take your pick — it’s a wacky city. The average New Yorker may not know what the protocols are for those kinds of disasters. Until they pass under a street light, that is. Remember, with Li-Fi, if there’s light, you’re online. Subway stations and tunnels, common dead zones for most emergency communications, pose no obstruction. Plus, in times less stressing cities could opt to provide cheap high-speed Web access to every street corner[7].

It can be used in the places where it is difficult to lay the optical fibre like hospitals. In operation theatre Li-Fi can be used for modern medical instruments. In traffic signals Li-Fi can be used which will communicate with the LED lights of the cars and accident numbers can be decreased. Thousand and millions of street lamps can be transferred to Li-Fi lamps to transfer data. In aircraft Li-Fi can be used for data transmission. It can be used in petroleum or chemical plants where other transmission or frequencies could be hazardous.

VII. CONCLUSION

There are a plethora of possibilities to be gouged upon in this field of technology. If this technology becomes justifiably marketed then every bulb can be used analogous to a Wi-Fi hotspot to transmit data wirelessly. By virtue of this we can ameliorate to a greener, cleaner, safer and a resplendent future. The concept of Li-Fi is attracting a lot of eye-balls because it offers a genuine and very efficient alternative to radio based wireless. It has a bright chance to replace the traditional Wi-Fi because as an ever increasing population is using wireless internet, the airwaves are becoming increasingly clogged, making it more and more difficult to get a reliable, high-speed signal. This concept promises to solve issues such as the shortage of radio-frequency bandwidth and boot out the disadvantages of Wi-Fi. Li-Fi is the upcoming and on growing technology acting as competent for various other developing and already invented technologies. Hence the future applications of the Li-Fi can be predicted and extended to different platforms and various walks of human life. This may solve issues such as the shortage of radio-frequency bandwidth and also allow internet where traditional radio based wireless isn’t allowed such as aircraft or hospitals. One of the shortcomings however is that it only work in direct line of sight.

REFERENCES

[7] www.macmillandictionary.com/buzzword/entries/Li-Fi.html