Movement of Metallic Particles in Single Phase Gas Insulated Busduct

L.Rajasekhar Goud¹, D.Subbarayudu²
¹Research scholar, Rayalaseema University Kurnool, A.P., INDIA
²Retired Senior Professor and Head, Department of EEE, G.Pullareddy Engineering(autonomous), Kurnool, A.P., INDIA

ABSTRACT

A method based on particle motion is proposed to determine the particle trajectory in Gas Insulated Substation (GIS) or Gas Insulated Busduct (GIB). In order to determine the movement of a particle in a GIB, an inner electrode diameter of 55mm and outer enclosure diameter of 152mm was considered. Aluminum and copper wires of 0.25mm/8mm were considered to be present on the enclosure surface. The motion of the wire (particle) was simulated using the charge acquired by the particles, the macroscopic field that the particle site, the drag coefficient, Reynold's number and coefficient of restitution. In order to determine the random behaviour of moving particles, the calculation of movement in axial and radial directions was done at every time step using rectangular random numbers. Typically for Aluminium wire for a bus duct voltage of 100 kV RMS, the movement of the particle (0.25mm / 10mm) for 2 Sec was computed to be 27.6306 mm in radial and 613.671 mm in axial directions.

Keywords-- Monte-Carlo, Particle Contamination, particle movement, Horizontal movement, Vertical movement

I. INTRODUCTION

The excellent dielectric properties of Sulphur Hexa fluoride (SF₆) have long been recognized of various high voltage applications. Compressed SF₆ gas has been used as an insulating medium as well as are quenching medium in electrical apparatus over a wide range of voltages. Due to high reliability of equipment, Gas Insulated Busduct (GIB) or Gas Insulated Substations (GIS) can be used for longer duration without any periodical inspections. Conducting contaminations could however, seriously reduce the dielectric strength of Gas Insulated system.

The paper deals with the computer simulation of particle movement in GIB. The specific work reported deals with the charge acquired by the particle due to microscopic field at the location of the particle, the force exerted by the field on particle, the drag due to viscosity of the gas and random behavior during movement.

II. MODELLING TECHNIQUE

A typical horizontal busduct comprising of inner conductor and outer enclosure, filled with SF₆ gas is considered for study. A particle (wire) is assumed to be at rest at the enclosure surface, until a voltage sufficient enough to lift the particle and move in the field is applied. After acquiring an appropriate charge in the filed, the particle lifts and begins to move in the direction of the field overcoming the forces due to its own weight and drag. The simulation considers several parameters eg. The macroscopic field at the location of the particle, its weight, viscosity of the gas, Reynold's number, drag coefficient of restitution on its impact to enclosure. During return flight, a new charge on the particle is assigned based on the instantaneous electric field.

III. THEORITICAL STUDY

The primary goal of the simulations was to create an appropriate mathematical model of the particle motion in a GIS which will enable further simulations of the motion particles with arbitrary shapes. Several authors [1-9] have suggested solutions for the motion of sphere or a wire like metallic particle in a coaxial system with bare electrodes under AC voltage. The motion equation of a particle can be expressed

\[
\frac{d^2 y}{dt^2} = F_e - mg - F_d
\]

(1)

Where y is the direction of motion m is the mass of particle, \(F_e\) is the electric force and \(F_d\) is drag force, the direction of the drag force is always opposed to the direction of motion. For laminar flow the drag force component around the hemispherical ends of the particle is due to shock and skin friction [2-3].
IV. SIMULATION RESULTS AND DISCUSSION

Computer simulations of the motion of metallic wire particles were carried out on GIB of 55mm inner diameter and 152mm outer diameter with 100KV RMS applied to inner conductor. A Software was developed in C language considering the above equations and was used for all simulation studies.

Fig.4.1 shows the movement of aluminum particle in radial direction for an applied voltage of 100kV rms. The highest displacement in radial direction during its upward journey is simulated to be 27.6306mm. As the applied voltage is increased the maximum radial movement also increases as given in Table1. Fig.4.2 shows the movement of copper particle was determined for 100 kV with similar parameters as above and was found to have a maximum movement of 8.468 mm in radial direction. The movement of Cu particle for various voltages is also given in Table. It is noticed that the movement of copper particle is far less than aluminum particle of identical size. This is expected due to higher weight of particle. The axial and radial movements of aluminum and copper particles are calculated using Monte-Carlo technique for voltages viz, 100kV, 132kV , 145 kV and 200 kV with solid angle of 0.8^0. It is significant to note that for all the cases considered, there is no change in maximum radial movement, even when Monte-Carlo method is applied.

<table>
<thead>
<tr>
<th>Voltage (kV)</th>
<th>Type</th>
<th>Max. Radial Movement (mm)</th>
<th>Axial Movement (mm)</th>
<th>Radial Movement (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Al</td>
<td>27.6306</td>
<td>613.671</td>
<td>27.630</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>8.468</td>
<td>191.357</td>
<td>8.468</td>
</tr>
<tr>
<td></td>
<td>Ag</td>
<td>6.6357</td>
<td>133.787</td>
<td>6.6356</td>
</tr>
<tr>
<td>132</td>
<td>Al</td>
<td>39.867</td>
<td>803.198</td>
<td>39.867</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>16.970</td>
<td>288.88</td>
<td>16.9709</td>
</tr>
<tr>
<td></td>
<td>Ag</td>
<td>12.866</td>
<td>267.353</td>
<td>12.866</td>
</tr>
<tr>
<td>145</td>
<td>Al</td>
<td>47.199</td>
<td>1049.72</td>
<td>47.198</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>18.426</td>
<td>314.247</td>
<td>18.426</td>
</tr>
<tr>
<td></td>
<td>Ag</td>
<td>16.516</td>
<td>222.957</td>
<td>16.516</td>
</tr>
<tr>
<td>200</td>
<td>Al</td>
<td>O.F</td>
<td>140.200</td>
<td>O.F</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>20.518</td>
<td>182.388</td>
<td>20.518</td>
</tr>
<tr>
<td></td>
<td>Ag</td>
<td>18.498</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
V. CONCLUSIONS

A model has been formulated to simulate the movement of wire like particle in Gas Insulated Busduct (GIB). Monte Carlo simulation in adopted to determine the axial as well as radial movements of particle in the busduct. Distance traveled in the radial direction is found to be same with or without Monte Carlo simulation.

ACKNOWLEDGEMENTS

The authors are thankful to Rayalaseema university, Kurnool and the management of G. Pulla Reddy Engineering College, Kurnool, AP(India) for providing facilities to do this work.

REFERENCES