New Spatiotemporal Approach for the Estimation of the Motions of Multiple Images using Time-Frequency Representation

S.M.Ramesh¹, B.Gomathy²
¹Department of ECE, EGS Pillay Engineering College, Nagapattinam,INDIA
²Department of CSE, Bannari Amman Institute of Technology, Sathyamangalam,INDIA

ABSTRACT

Estimating the motion characteristics within a time-varying scene and identifying the moving objects is an important task in many video applications. Most of the proposed motion analysis techniques are carried out directly in the pixel-intensity domain, applying typically the optical flow equation or correlation-matching in short sequences of frame, combined with spatial motion-smoothness constraints in order to obtain the actual motion field. How this has the unwanted effect of over-smoothing the motion discontinuities, across object edges. More recently, this problem is partially resolved within a robust estimation framework. The technique presented in this paper belongs to the class of spatiotemporal (3-D) spectral approaches, which exploit the information contained in long image sequences and estimate directly the true motion characteristics, regardless of the moving objects’ shape or dense motion discontinuities. However, the limitation of most spatiotemporal approaches is the assumption of constant motion. Thus, they can be applied only for short time intervals. A few attempts have been made to overcome the limitation. The authors in address only the problem of a single global time-varying motion, using the high-order ambiguity function, to estimate the parameters of chirp signals. The work in handles multiple accelerated motions, exploiting the chirp-Fourier transform and a clustering algorithm. In another recent work, the instantaneous velocities are estimated using time-frequency representations (TFRs), with the restriction, however, of stationary background and small moving objects. Combining and mainly extending previous relevant ideas, this paper presents a “motion first” spatiotemporal methodology, for the estimation of multiple, occluded or transparent, time-varying motions and the extraction of the moving objects in the frequency domain.

Keywords-- Time-frequency representation, Robust estimation, Hough transform, Fuzzy c-planes, Hamming window.

I. INTRODUCTION

These instructions Modern digital technology has made it possible to manipulate multi-dimensional signals with systems that range from simple digital circuits to advanced parallel computers. The goal of this manipulation can be divided into three categories:

* Image Processing image in -> image out
* Image Analysis image in -> measurements out
* Image Understanding image in -> high-level description out

A digital image a [m,n] described in a 2D discrete space is derived from an analog image a (x,y) in a 2D continuous space through a sampling process that is frequently referred to as digitization. The 2D continuous image a (x,y) is divided into N rows and M columns. The intersection of a row and a column is termed a pixel. The value assigned to the integer coordinates [m,n] with {m=0,1,2,...,M-1} and {n=0,1,2,...,N-1} is a [m,n]. In fact, in most cases a (x,y)--which we might consider to be the physical signal that impinges on the face of a 2D sensor is actually a function of many variables including depth (z), color (A), and time (t).

In electrical engineering and computer science, Image processing is any form of signal processing for which the input is an image, such a photographs or frames of video; the output of image processing can be either an image or a set of characteristics or parameters related to the image. Most image-processing techniques involve processing the image as a two-dimensional signal and applying standard signal-processing techniques to it.

Image processing usually refers to digital image processing, but optical and analog image processing are also possible. This article is about general techniques that apply to all of them. Among many other image processing operations are:

- Geometric transformations such as enlargement, reduction, and rotation
- Color corrections such as brightness and contrast adjustments, quantization, or conversion to a different color space
- Digital compositing or Optical compositing (combination of two or more images). Used in filmmaking to make a "matte"
- Interpolation, demosaicing, and recovery of a full image from a raw image format using a Bayer filter pattern
- Image editing (e.g., to increase the quality of a digital image)
- Image registration (alignment of two or more images), differencing and morphing
- Image segmentation
- Extending dynamic range by combining differently exposed images
- 2-D object recognition with affine invariance

Digital image processing is the use of computer algorithms to perform image processing on digital images. As a subfield of digital signal processing, digital image processing has many advantages over analog image processing; it allows a much wider range of algorithms to be applied to the input data, and can avoid problems such as the build-up of noise and signal distortion during processing.

Digital image processing allows the use of much more complex algorithms for image processing, and hence can offer both more sophisticated performance at simple tasks, and the implementation of methods which would be impossible by analog means.

In particular, digital image processing is the only practical technology for:
- Classification
- Feature extraction
- Pattern recognition
- Projection
- Multi-scale signal analysis

The term digital image refers to processing of a two-dimensional picture by a digital computer. In a broader context, it implies digital processing of any two-dimensional data. A digital image is an array of real or complex numbers represented by a finite number of bits. An image given in the form of a transparency, slide, photograph or an X-ray is first digitized and stored as a matrix of binary digits in computer memory. This digitized image can then be processed and/or displayed on a high-resolution television monitor. For display, the image is stored in a rapid-access buffer memory, which refreshes the monitor at a rate of 25 frames per second to produce a visually continuous display.

II. METHODOLOGY

2.1 Modeling Multiple Time-Varying Motion

We use a 2.5-D layered representation for image sequences, which is described in Fig. 1. The layers are ordered in depth. For each layer $1 \leq l \leq L$, we have:
- a) the intensity map I_l
- b) the alpha map α_l which defines the spatial support/opacity of the layer and remains always registered with the intensity map;
- c) the time varying velocity v_l, which describes how the maps move over time. The layered representation can be summarized in the equation

$$f(x; t) = \sum_{l=1}^{L} I_l (x - d_l(t)) \times \alpha_l(x; t) \tag{1}$$

where $d_l(t) = [d_{lx}(t), d_{ly}(t)] = \int_0^t \alpha_l(x; \tau) d\tau$ is the displacement of the lth layer at time t and

$$\alpha_l(x; t) = \alpha_l(x - d_l(t)) \prod_{i=1}^{l-1} (1 - \alpha_l(x - d_i(t))) \tag{2}$$

is a window function which carries the transparency/occlusions information during time. Although the alpha map remains registered with the intensity map, this does not hold for w_l. The window w_l is and has to be decomposed into a constant portion and a deformable, error-introducing portion.

![Fig. 1: Block diagram for our layered model, similar to the one in [5]; “and” represents $\text{and}(u_i) = 1 - u_i$.](image)

After some manipulations [6]

$$f(x; t) = \sum_{l=1}^{L} f_l(x - d_l(t)) + e(x; t) \tag{3}$$

Where $f_l(x)$ corresponds to the virtual. The distortion term $e(x; t)$ accounts for the deformation due to occlusions. Any other source of distortion (sensor noise, deviation from the motion model, etc.) can also be included. An explicit analysis in the frequency domain for the occlusion distortion term in the case of time-constant velocities and two moving objects can be found. Notice that our model intrinsically can handle generally
transparent motions, with the occluded motion being only a special case, when it is simply zero or unity.

2.2 Velocity Estimation as Instantaneous Frequency Estimation

This presents a new mobile station velocity estimator based on the first moment of the instantaneous frequency (IF) of the received signal. The effects of shadowing, additive noise, and scattering distribution on the proposed velocity estimator are analyzed. We show that, unlike velocity estimators based on the envelope and quadrature components of the received signal, the proposed estimator is robust to shadowing. We also prove that the performance of the IF-based estimator is only mildly affected by the presence of additive noise. Finally, by using simulations we show that the performance of the proposed IF-based estimator is superior to that of existing velocity estimators.

Consider the spatial (2-D) Fourier transform of each frame. From (3) and with, we have \(w = (wx, wy) \)

\[
F(\omega; t) = \sum_{l=1}^{L} F_l(\omega)e^{j\phi_l(\omega; t)} + E(\omega; t) \tag{4}
\]

Where the instantaneous phase of the \(i \) th component is

\[
\phi_l(\omega; t) = \omega_{ix}d_{ix}(t) + \omega_{iy}d_{iy}(t). \tag{5}
\]

Consequently, the corresponding instantaneous frequency is

\[
v_l(\omega; t) = \frac{\partial \phi_l(\omega; t)}{\partial t} = \omega_{ix}u_{ix}(t) + \omega_{iy}u_{iy}(t) \tag{6}
\]

Where \(u_i(t) = [u_{ix}(t), u_{iy}(t)] \) stands for the instantaneous velocity of the \(i \)th object, which considered to be a continuous and smooth function of \(t \), as expected by the physics laws. From (4)–(6), one can conclude the following.

1) For a fixed spatial frequency \(w \), the signal is a superposition of frequency modulated (FM) complex sinusoids with instantaneous frequencies.
2) For a given time instant \(t \), the instantaneous frequency \(v_l(\omega_x, \omega_y; t) \) varies linearly with \(\omega_x \) and \(\omega_y \). The triplets \((\omega_x, \omega_y, v_l(\omega_x, \omega_y; t)) \) lie on a plane through the origin, whose direction depend on the instantaneous velocity at the instant \(t \).

According to the first conclusion, a key component of our approach is the estimation of the instantaneous frequencies. For this purpose one can exploit established signal processing tools, such as the time-frequency representations.

2.3 Smoothed Pseudo Wigner-Ville (SPWV) Distribution

In practical time-frequency (T-F) analysis of nonstationary signals associated with the use of the smooth pseudo Wigner-Ville distribution (SPWV), an important issue is a choice of the smoothing window. To address this problem, a fast sub-optimal technique is proposed, relating the window length to the approximate slope of the frequency modulation. The results obtained by using this automated procedure are comparable to results given by supervised decompositions and are more (locally) adapted. The developed method has been used in processing of radar returns. In order to objectively assess the performance of the transforms, several measures can be used. For signals with unknown modulation laws, cost functions are available, including measures based on entropy function. Their application to evaluation of the obtained T-F distributions is demonstrated.

The WV distribution presents perfect localization along the instantaneous frequency for a single linear FM sinusoid. However, it presents emphatic interference terms in the case of multicomponent signals, which may be destructive in many applications. Fortunately, the interference terms have oscillatory nature and can, therefore, be attenuated by the smoothing operation. The wider the time (frequency) smoothing window, the more time (frequency) smoothing can be achieved.

2.4 Extraction Information from Time-Frequency Images

Up to this point, we have examined the main solutions proposed to the problem of representing a nonstationary signal in the time-frequency plane. We now consider the problem of the interpretation of the time-frequency image which describes the evolution with time of the frequency content of the signal. Even if they all tend to the same goal, each representation has to be interpreted differently, according to its own properties. For example, some of them present important interference terms, other are only positive, other are perfectly localized on particular signals...So the extraction of information has to be done with care, from the knowledge of these properties. We give some general guide lines to profit a time-frequency image.

2.4.1 Hough transform

The Hough transform is a feature extraction technique used in image analysis, computer vision, and digital image processing. The purpose of the technique is to find imperfect instances of objects within a certain class of shapes by a voting procedure. This voting procedure is carried out in a parameter space, from which object candidates are obtained as local maxima in a so-called accumulator space that is explicitly constructed by the algorithm for computing the Hough transform. In automated analysis of digital images, a subproblem often arises of detecting simple shapes, such as straight lines, circles or ellipses. In many cases an edge detector can be used as a pre-processing stage to obtain image points or image pixels that are on the desired curve in the image.
space. Due to imperfections in either the image data or the edge detector, however, there may be missing points or pixels on the desired curves as well as spatial deviations between the ideal line/circle/ellipse and the noisy edge points as they are obtained from the edge detector. For these reasons, it is often non-trivial to group the extracted edge features to an appropriate set of lines, circles or ellipses. The purpose of the Hough transform is to address this problem by making it possible to perform groupings of edge points into object candidates by performing an explicit voting procedure over a set of parameterized image objects.

The simplest case of Hough transform is the linear transform for detecting straight lines. In the image space, the straight line can be described as \(y = mx + b \) and can be graphically plotted for each pair of image points \((x, y)\). In the Hough transform, a main idea is to consider the characteristics of the straight line not as image points \(x\) or \(y\), but in terms of its parameters, here the slope parameter \(m\) and the intercept parameter \(b\). Based on that fact, the straight line \(y = mx + b\) can be represented as a point \((b, m)\) in the parameter space. However, one faces the problem that vertical lines give rise to unbounded values of the parameters \(m\) and \(b\). For computational reasons, it is therefore better to parameterize the lines in the Hough transform with two other parameters, commonly referred to as \(r\) and \(\theta\) (theta). The parameter \(r\) represents the distance between the line and the origin, while \(\theta\) is the angle of the vector from the origin to this closest point. It is therefore possible to associate to each line of the image, a couple \((r, \theta)\) which is unique if and only if \(r\) and \(\theta\) are the unknowns to be estimated, as analyzed in a paper uses the fuzzy c-planes (FCP) clustering approach to fit planes to three-dimensional (3-D) frequency domain data obtained from the peaks of the periodograms. Experimental results are provided to demonstrate the effectiveness of the proposed method.

2.5.1 Some Remarks and Implementation Detail

Static Background: The effect of a static background is the addition of a DC term in \(F (w,t) \) for each spatial frequency. Therefore, for each \(w \) one can subtract from \(F (w,t) \) its mean value. This cancels out the strong effects due to the static background in the TF plane and reveals the weaker frequency components.

Temporal Aliasing: The minimum required sampling rate for an alias-free (smoothed pseudo-) \(F (w,t) \) distribution is twice the Nyquist rate. Therefore, aliasing introduces wrapping of the motion planes around \(\pm (\pi/2) \), along the temporal frequency.

Spatially Local Application: The assumptions of the motion model may be relaxed, letting the objects (the intensity and alpha maps) deform slowly with time, because of the time windowing introduced by the TF representations. This is verified also from the presented experimental results. Additionally, applying the motion model within spatial blocks (overlapping or not), more complicated motions (for example affine) are well approximated. Compared to pixel-domain approaches, frequency-domain approaches suffer from requiring large local windows, where different motions can occur. This problem is partly resolved given that our approach can handle discontinuous motions.

TFR Windows Selection: The choice of the windows’ type and width used in TFRs affect the accuracy of the instantaneous frequencies estimations. However, the optimal width depends on the instantaneous frequencies, which are the unknowns to be estimated, as analyzed in an explicit study about the influence of the used windows to the accuracy of the proposed method is beyond the scope of this paper, since the final velocity estimates depend on the effectiveness of the proposed method.

2.6 Moving Object’s Extraction and Motion Segmentation

In order to complete our motion estimation task by additionally identifying the moving objects, we modify two known approaches adapting them to our problem, as follows.

The input video which is in any format is converted into .mat form and loaded as an image sequence. Here this video is analyzed as 32 frames. It is varied according to the video. This video frame contains two analyses and they are paired to obtain the motion vectors using a procedure proposed by Chen, Giannakis, Nandhakumar. In this paper, we present a more efficient method that replaces the motion component pairing task and hence eliminates the problems of the pairing method described by Chen et al. The method described in this paper uses the fuzzy c-planes (FCP) clustering approach to fit planes to three-dimensional (3-D) frequency domain data obtained from the peaks of the periodograms. Experimental results are provided to demonstrate the effectiveness of the proposed method.
images which are the boat and the building. The image is sized according to the required dimensions. Here the dimension is 296*296. Matrix form is converted into gray scale image. The matlab function used here is mat2gray. The required image is zero padded. The fast fourier transform of the two images is calculated, the region of the two images is calculated and allocated memory for it. Then according to alpha map the pixel values of the boat are made “zero” and the background is made “one” and vice-versa. Thus the multiple images boat and the background is segmented individually.

The input video which is loaded is sized and converted to double form to use in for, while loops. The white Gaussian noise with signal to noise ratio of 32 db is added. The 2D FFT of each frame is calculated. The required time for this action is displayed. The maximum spatial frequencies that will be used is defined. Region, length of that spatial frequencies is defined. For each kx.ky the mean value along t is subtracted.

The TFR along t is calculated. In spectrogram sub function, the window is checked foe odd length. The window used here is hamming window. The required time for this is displayed. The number of moving objects used here is two. The FCP fuzzifier implemented is also two. For each t, the peaks along w in TFR are found using squeeze and pickpeak operations. Using Fuzzy c-planes, the eigen vectors that span the given initial planes is found. The covariance matrices are found. The graphs showing the velocities of the two moving images in two different planes are obtained using MATLAB simulation.

III. EXPERIMENTAL RESULTS

These instructions give the overall motion-estimation algorithm is described. The Matlab code that accomplishes the simulation results, in the first experiment, the spectrogram is used because of it simplicity. In the next experiments, the SPWV distribution is used, with a Hamming window of length \(T/10 \) as the time-smoothing window and a Hamming of length \(T/4 \) as the frequency-smoothing window.

\[h(t) = IFT\{H(u)\}. \]

3.1 White Tower & Boat Synthetic Sequence

The synthetically generated sequence contains a moving object (boat) on a moving background (White Tower). The frame size is 296*296 and the sequence’s length is frames \(T = 64 \). The background moves with velocity \(u_{1x}(t) = -1 \) pixel/frame and the boat decelerates according to \(u_{2x}(t) = 3 - 0.05t \) pixels/frame.

For this experiment, White Gaussian Noise with \(\text{SNR}=32\text{dB} \) was added. We use the spectrogram because of its simplicity. The window used to obtain the Short-Time Fourier Transform is a. In the TFR images, we search for two peaks along for each time instant. This is equivalent to applying the proposed Hough-transform methodology on TFR slices of length. Although, the spectrogram presents interference terms and bad localization, the estimated instantaneous velocities using FCP are very close to the real ones, as can be realized.

3.2 Segmented Video with Velocity Estimation

White Tower & Boat Frames 1, 32, 64 (three first figures) and the extracted layers, obtained applying (20) to the object’s images, taken using the proposed frequency-domain method, for the first 32 frames (last two figure).

OUTPUT VIDEO FRAME

[Image: Figure 2: White Tower & Boat-estimated instantaneous velocities.]

ESTIMATION OF VELOCITY IN X AND Y PLANE

[Image: Figure 3: White Tower & Boat-motion segmentation results using graph-cuts for the frames 1, 10 and 20]

IV. CONCLUSION

In this work a new spatiotemporal approach for the estimation of the motions of multiple objects, which
move with time-varying velocities. For this task, TFR was the appropriate, selected signal processing tool. We applied the Hough transform in overlapping time-slices of the TFR images to increase the robustness against noise and interference terms, present in the TFRs. Moreover, by exploiting the instantaneous frequencies estimates obtained for many spatial frequency pairs using FCP, we increased the robustness and accuracy of our method. Having estimated accurately the objects velocities, the proposed objects segmentation approaches produced correct and meaningful results. The experiments on various synthetic and natural sequences verified the effectiveness of the proposed method.

REFERENCES