On Quasi Umbilical Submanifold of Co-Dimension-2 of Almost Hyperbolic Manifold

B.B. Pandey1, S.B. Pandey2

1,2Department of Mathematics, Kumaun University, Soban Singh Jeena Campus, Almora, (Uttarakhand), INDIA

ABSTRACT

Hypersurfaces immersed in an almost hyperbolic Hermitian manifold studied by Dube and Mishra [3]. Almost hyperbolic hermite manifold have been studied by Dube [2]. Hypersurfaces of almost hyperbolic Hermitian manifold I, II, have been studied by Bhatt and Dube [1]. The purpose of the present paper is to study the Quasi – Umbilical submanifold of co-dimension -2 of an almost hyperbolic manifold. We have obtained the condition for this submanifold, to be W –Quasi umbilic.

I. INTRODUCTION

Let V_{2n+2} be c^∞ - manifold and there exist a vector valued linear function F of differentiability class c^∞ - satisfying .

(1.1) $F^2 X = X$.

Then V_{2n-1} is said to be an almost hyperbolic manifold and F is said to give an almost hyperbolic structure to V_{2n+2} let the almost hyperbolic manifold V_{2n+2} be endowed with Riemannian metric g satisfying [4].

(1.2) $G(FX, FY) = G(X, Y)$

Then V_{2n+2} is called almost hyperbolic Riemannian manifold . Let D be the Riemannian in almost hyperbolic Riemannian manifold V_{2n+2} if ,

(1.3) $D (F) Y = 0$

V_{2n+2} is called almost hyperbolic manifold . V_{2n+2} be a differentiable submanifold of V_{2n+2} such that .

(1.4) $FBX = BFX + u \otimes P + v \otimes Q$

(1.5) $FP = BU - \lambda q$

(1.6) $Fq = bv - \lambda p$

Where P and Q are two unit normal vector fields to V_{2n} if the fields of type (1.1) , U, V are vector fields u, v, and λ is a c^∞ function . Operating equation (1.4)(1.5)(1.6) by F and using equation (1.1)(1.2)(1.4)(1.5)(1.6) and using tangential and normal part ,we have

(a) $f^2 X = X + u(X) U + v(X) V$,

(b) $U(fX) = \lambda v(X)$, $v(fX) = \lambda u(X)$

(1.7)

(c) $fu = - \lambda V$, $fv = - \lambda U$,

(d) $u(U) = -(1 + \lambda^2)$, $u(V) = 0$

(e) $v(U) = -(1 + \lambda^2)$, $v(U) = 0$.

Thus we get the almost hyperbolic contact {f, g, η, ξ} structure[4]. Let g be the induced Riemannian metric in V_{2n} defined by

(1.8)

(a) $g(X,Y) = G(BX, BY)$

B being differential map.

(1.8) (b) $G(BX, P) = 0 = G(BX, Q)$

(1.8) (c) $G(P, P) = 1 = G(Q, Q)$

Then using equation (1.4) and (1.8) in equation (1.2) we get

(1.9) $g(fX, fY) = -g(X, Y) - u(X) u(Y) - v(X) v(Y)$

(1.10) $g(U, X) = u(X)$, $g(V, X) = v(X)$

Thus the submanifold V_n of an almost product and decomposable manifold.

Let D be an affine connection is V_{2n} induced by the Riemannian connexion of almost hyperbolic manifold V_{2n+2} then Gauss and Weingarten’s equation are given by

(1.11) $D_{BX} BY = BD_{X} Y + h(X,Y) P + K(X,Y) Q$

(1.12) $D_{BX} P = -BHX + l(X) Q$

(1.13) $D_{BX} Q = -BKX + l(X) Q$

Where h and K are second fundamental forms and l is the third fundamental form defined by

(1.14) $g(HX, Y) = h(X,Y)$, $g(KX, Y) = K(X,Y)$

H and K being the tensors of type

(1.1) differentiating equation

(1.4)(1.5) and (1.6) and using equations (1.1)(1.2)(1.11)(1.12) and (1.13) we get

(1.15) $D_{UX} Y = h(X, Y) U + k(X, Y) V - u(Y) HX - v(Y) KX$

(1.16) $D_{UX} U = -h(X, Y) U - k(X, Y) V - u(Y) l(X)$

(1.17) $D_{UX} V = -\lambda h(X, Y) - k(X, Y) - v(Y) l(X)$

II. QUASI UMBOILICAL SUBMANIFOLD

Let in submanifold V_{2n}

(2.1)(a) $h(X,Y) = \alpha g(X,Y) + \beta w(X)w(Y)$

(2.1)(b) $K(X,Y) = \alpha g(X,Y) + \beta w(X)w(Y)$

Be satisfied in which α, β and α', β' are scaler functions and w is 1-form if $\alpha \neq 0$, $\beta \neq 0$ and $l \neq 0$, then w-Quasi Umbilical submanifold is called para cylindrical submanifold.

Theorem (2.1): If the submanifold V_{2n} of Co-dimension-2 of an almost hyperbolic manifold V_{2n+2} is w-Quasi umbilical thus we have

(2.3)(a)

$$D_X f(Y) = \alpha g(X,fY) + \beta w(X)w(Y)$$

(2.3)(b)

$$D_X v(Y) = \alpha v(X) + \beta w(X)w(Y)$$

(2.3)(c)

$$\lambda^\prime \alpha g(X,Y)-\beta w(X)w(Y)-\alpha' \beta w(X)w(Y)$$

Theorem (2.3): The Nijenhuis tensor Corresponding to the tensor field f in V_{2n}

(2.7) $N(X,Y) = \beta w(X)w(Y)$

Proof: If N be the Nijenhuis tensor Corresponding to the tensor field f in V_{2n}

(2.9) $N(X,Y) = \beta (v(X)w(Y)-w(X)v(Y))$}

REFERENCE

