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ABSTRACT 

In this paper a review of k-means, incremental k –
means and D-M algorithm is presented. How the objects are 
clustered based on the three partitioning algorithms is shown. 
The complexities are calculated and compared. 
Implementations of the algorithms are clearly presented with 
their objects grouping. 
 

I. IMPLEMENTATION VIEW 
OF D-M CLUSTERING 

 
An example is taken to understand D-M 

clustering algorithm. In table below there is sample of four 
medicines having two attributes weight and pH. Let these 
medicines are given name A, B, C, D as data objects and 
its attributes weight and pH as X, Y. Here example is taken 
only for four data object with two attributes although it is 
applicable to n data objects with n attributes.  The goal is 
to group these objects into groups (clusters) based upon 
attributes. 

 
 
1. Initialization

In dynamic means clustering algorithm, there is 
no information about how many clusters have to be 
formed. So value of k is taken one initially. Consider 
object/medicine A as the first cluster and value of k is 
initialized to 1, where k denotes the number of clusters.K1

  

 
is name of first cluster. In other words k1

Y as columns. There is only one element in k

 is first cluster 

matrix. It is represented by a matrix of order 1 × 2 having 
object/medicine A as its row with its two attributes X and  

1.   k1= [A] 
 i.e.  k1= [1    1].C denotes centroid matrix 
which keeps information about each cluster’s centroids. 
Each cluster has centroid. Till now only one cluster is 
formed so only one centroid. Moreover, There is only one 
object in that cluster therefore cluster’s centroid is that 
object i.e. object A (1, 1).  

 
Let the threshold limit (Tth

2. Select next object

) = 2.5 which is 
maximum distance allowed between a cluster’s centroid 
and its objects. 

:

Select next object i.e. medicine B (2, 1) and 
calculate the distance (m) between object B and centroid of 
each cluster. There is only one cluster k

 (until all data objects are 
examined) 

1 thus only one 
centroid (1, 1). So using Euclidean distance formula, m= 
((2-1)2 + (1-1)2) ½ = 1.Distance (m) is “1” which is less 
than threshold limit. Therefore object B is included in the 
same cluster in which object A is i.e. k1.  Now k1 cluster 
have two objects object A and object B. It looks like this 

 
   
Centroid matrix also updates. Attributes X and Y is 
recalculated for object A (1, 1) and object B (2, 1). 
Attribute X is mean value of X coordinates of all objects in 
that cluster and attribute Y is mean value of Y coordinates 
of all objects in that cluster. The coordinates of centroid 
are 
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3. Select next object  

Select next object i.e. medicine C (4, 3) and 
measure the distance between object C and each centroid 
of the clusters. Till now, there is only one cluster k1 thus 
only one centroid (3/2, 1). So using Euclidean distance 
formula,   m= ((4-3/2)2   + (3-1)2) ½ = 3.20.Distance 
between object C and centroid is “3.20” which is greater 
than threshold (Tth ). So make a new cluster (k2

 

 

) and 
increase the value of k by one i.e. k=2.And K updates 
with a new row 
 

      
   
Centroid matrix also updates with new row. This new row 
is 2nd cluster’s centroid. 2nd cluster have single object so its 
centroid is object C (4, 3). 

 
4. Select next object 

Select next object i.e. medicine D (5, 4) and 
measure the distance between object D and each centroid 
of the clusters. There are two clusters k1 and k2. k1 and k2 
have centroids (3/2, 1) and ( 4, 3) respectively. There is 
need to find distance between object D and centroid (3/2, 
1) and distance between object D and centroid (4, 3). So 
using Euclidean distance formula  

 
 
In case 1st distance is greater than threshold limit and in 
case 2nd distance (m) is less than threshold (Tth ).  So 
object D is closer to object C. Now Cluster k2 have two 
elements object D and object C. 
 

 
 

Now K is matrix with two clusters k1 and k2, k1 
have two objects object A and object B and k2 having two 
objects object C and object D. There is no addition of any 
object to cluster k1 so its centroid is as it is. Centroid of 
cluster k2 changes to X = (4 + 5) / 2 = 4.5 andY = (3 + 4) / 
2 = 3.5.Centroid matrix changes to 

 
 

There are two clusters, showing that medicine A 
& medicine B belongs to cluster1 & medicine C & 
medicine D belongs to cluster2. 
 

II. IMPLEMENTATION VIEW

 

 
OF K-MEANS 

1. Initial value of centroids  
In k-Means k is number of clusters to be formed. 

Let its value is two. Consider Object A and Object B as 
two clusters. As there is only one element in each cluster 
so let c1=(1,1) and  c2=(2,1) denote the coordinate of the 
centroids of both clusters. 
2. Objects-Centroids distance 

Next step of this algorithm is to measure the 
distance between cluster centroid to each object. Using 
Euclidean distance, distance matrix at iteration 0 is: 
 

 
 

Each column in the distance matrix symbolizes 
the object. The first row of the distance matrix corresponds 
to the distance of each object to the first centroid and the 
second row is the distance of each object to the second 
centroid. For example, distance from object C = (4, 3) to 
the first centroid c1=(1,1) is   √(4-1)2 + (3-1)2 = 3.61, and 
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its distance to the second centroid c2=(2,1) is   √(4 -2)2 + 
(3-1)2 = 2.83 , etc.  
3. Objects clustering  

Assign each object based on the minimum 
distance. Thus, object A is assigned to group 1, object B to 
group 2, object C to group 2 and object D to group 2. The 
element of Group matrix below is 1 if and only if the 
object is assigned to that group.  

 
4. Iteration-1, determine centroids 

Knowing the members of each group, now 
compute the new centroid of each group based on these 
new memberships. Group 1 only has one member thus the 
centroid remains in c1=(1,1). Group 2 now has three 
members, thus the centroid is the average coordinate 
among the three members:  

 
Iteration-1, Objects-Centroids distances  

The next step is to compute the distance of all 
objects to the new centroids. Similar to step 2, we have 
distance matrix at iteration 1 is  

 
 
5.  Iteration-1, Objects clustering  

Similar to step 3, assign each object based on the 
minimum distance. Based on the new distance matrix, 
move the object B to Group 1 while all the other objects 
remain in Group 2.The Group matrix is shown as 

 
 Iteration 2, determine centroids 
  Repeat step 4  to measure the new centroid’s 
coordinate based on the clustering of previous iteration. 
Group1 and group 2 both has two members, thus the new 
centroid’s are    

 
Iteration-2, Objects-Centroids distances 

Repeat step 2 again, there is new distance matrix 
at iteration 2 as  
 
 

 
Iteration-2, Objects clustering 
 Again, assign each object based on the minimum distance.  

 
But Obtained result that G2=G1. Comparing the 

grouping of last iteration and this iteration reveals that the 
objects does not move group anymore. Thus, the 
computation of the k-Means clustering has reached its 
stability and no more iteration is needed. Here is the final 
grouping in table below. There are two clusters showing 
that medicine A & medicine B belongs to cluster1 & 
medicine C & medicine D belongs to cluster 2. 

 
 

III.  IMPLEMENTATION VIEW OF 
INCREMENTAL K-MEANS 

 

In this algorithm there is no information about 
how many clusters have to be formed. So, value of k is 
taken one initially. Preprocessing is done to form an 
adjacency matrix of order n × n which stores the distance 
between each pair of data object, where n is the number of 
objects. Consider first data object i.e. medicine A as first 
cluster and value of k is initialized to  1.k

1. Value of adjacency matrix 

1 is name of first 
cluster. In other words k1 is first cluster matrix. It is 
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represented by a matrix of order 1 × 2 having 
object/medicine A as its row with its two attributes X and 
Y as columns. k1 is shown below. Till now there is one 
cluster matrix so there is only one element in K.   

 
Let Threshold limit (Tth) = 2.5 which is maximum distance 
allowed between two data object of same cluster. 
2. Select next object (until all data objects are examined) 
select next object i.e. medicine B (2, 1) and measure the 
distance (m) between object B and each object in the 
clusters. As there is only one cluster k1 having only one 
object i.e. object A. So there is need to find distance 
between object B and object A. Distance between object B 
and object A is “1” i.e. entry in 2nd row and 1st column is 
“1” which is taken according to Euclidean distance 
formula, i.e. m= ((2-1)2 + (1-1)2) ½ = 1Compare distance 
(m) with threshold limit which is 2.5. It is less than our 
threshold limit. Therefore object B is included in the same 
cluster in which object A reside i.e. k1. Now k1 cluster 
have one more object i.e. medicine B. Cluster k1 is 
updated with a new order 2 × 2 having object A and object 
B as its element. Every new object in a cluster increases a 
row in the corresponding cluster matrix. 

 
       
3. Select next object 

Select next object i.e. medicine C (4, 3) and 
measure the distance between object C and each object in 
the clusters. There is only one cluster k1 with two objects 
object A and object B. So there is need to find distance 
between object C and object A and between object C and 
object B. By using adjacency matrix- 1. Distance between 
object C and object A is “3.61” and Distance between 
object C and object B is “2.83”So in both cases distance 
(m) is greater than threshold (Tth ).  Object C can’t be 
element of 1st cluster. Make a new cluster (k2) with this 
object as its an element. Increase the value of k by one i.e.
 k=2.k2 is the name of second cluster. Its cluster 
matrix is represented by a matrix of order 1 × 2 having 
object/medicine C as its row with two attributes X and Y 
as its column. There is only one element in k2. And K 
updates with new row i.e. [k2] and looks like  

 
 
4. Select next object 

Select next object i.e. D (5, 4) and measure the 
distance between object D and each object in the clusters. 
There are two clusters k1 and k2.  k1 have two objects, 
object A and object B, and k2 having only one object, 
object C. So there is need to find distance between object 
D object A, between object D and object B and between 
object D and object C. By using adjacency matrix-  
Distance between object D and object A is “5” and 
Distance between object D and object B is “4.24” and 
Distance between D and C is “1.41”.In case 1st, 2nd 
distance is greater than threshold limit and in 3rd case 
distance (m) is less than threshold (Tth ).  So object D is 
closer to object C i.e. object D is an element of 2nd cluster. 
Now Cluster k2 have two elements object D and object 
C.And K updates and looks like  

 
K is matrix with two clusters k1 and k2 , k1 have 

two objects A(1, 1) and object B(2, 1) and k2 having two 
objects C(4, 3) and object D(5, 4).All the data objects have 
been selected one by one. So set K is final set of clusters. 
k1 is 1st  cluster and k2 is 2nd cluster.A .There are two 
clusters i.e. 1st cluster as it is and 2nd cluster is updated 
with new object, object D.  

 
 

IV. K-MEANS COMPLEXITY 
 

To calculate the running time of k-Means 
algorithm it is necessary to know the number of times each 
statement run and cost of running. 
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Fig.: Complexity of K-means 

 
Sometimes number of steps is not known so it has 

been assumed. For example let number of times first 
statement runs with cost m1 is l (>=1). For each l, next 
statement, for i=1, 2 . . . n, where n is number of data 
objects, runs n+1 times with cost m2. For each l and for 
each n, next statement runs k+1 times where k is number 
of clusters with cost m3. 4th statement runs one time for 
each l and for each n with cost m4. Calculating new mean 
for each cluster requires k+1 runs for each l with cost m5 
as shown. 

 
 

V. INCREMENTAL K-MEANS 
 
In incremental k-means, number of times each 

statement runs is known. 1st, 2nd, 3rd, and 4th statement runs 
one time only with cost m1, m2, m3, m4 respectively. 
Next statement, for i= 2, 3 . . . n where n is number of data 
objects, runs n times with cost m5. 6th statement, for each 
n, scans each object in each cluster with cost m6. To 
understand running time for this statement let there are k 
clusters and in each cluster there are s objects. So running 
time of this statement, for each n and for each k is s+1. 7th 
statement runs n-1 times. Rest of statements is part of if-
then-else body. Let if-then part body run for r times with 
cost m8 and then else part runs for n-1-r times with cost 
m9, m10, m11 as shown in figure. 

 

 
 
VI.  D-M CLUSTERING ALGORITHM 

 
In D-M clustering algorithm, like incremental k-

Means, number of times each statement runs is known. 1st, 
2nd, 3rd, 4th and 5th statement runs one time only with cost 
m1, m2, m3, m4 and m5 respectively. Next statement, for 
i= 2, 3 . . . n where n is number of data objects, runs n 
times with cost m6. 7th statement, for each n, scans 
centroid of each cluster with cost m7.                                  
So it runs k+1 times where k is number of clusters. 8th 
statement runs n-1 times with cost m8. Rest of statements 
is part of if-then-else body. Let if-then part body runs for r 
times with cost m9, m10 and then else part body runs for 
n-1-r times with cost m11, m12, m13, m14 as shown.  
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