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ABSTRACT  
In this paper, we study the effect of Stokes drag in 

the Restricted Three Body Problem (R3BP). It examines the 

existence and stability of non-collinear libration points L4,5 in 

the restricted three body problem.  The bigger primary is 

taken as oblate spheroid and smaller one as a finite straight 

segment. The linear stability of non-collinear libration points 

is also discussed. The non-collinear libration points are found 

to be unstable. 
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I. INTRODUCTION 
 

The restricted three body problem is one of the 

most important problems in celestial mechanics. It is the 

simplest form of the general three body problem, in which 

a particle of infinitesimal mass moves in the gravitational 

field of two massive bodies (called the primaries). 

Lagrange showed that in this frame five libration points do 

exist, out of which three are collinear with the primaries 

and two forms equilateral triangle with the primaries 

(Szebehely [15]). Aggarwal et al. [1] discussed the non-

linear stability of the triangular libration point L4 of the 

R3BP under the presence of the third and fourth order 

resonances by taking bigger primary as an oblate body and 

the smaller one as a triaxial body and both are source of 

radiation. They found that L4 is always unstable. The 

equilibrium solutions and linear stability of m3 and m4 

considering one of the primaries as an oblate spheroid have 

been examined by Aggarwal and Kaur [2]. Jain and 

Aggarwal [3] determined the existence and stability of 

libration points in the restricted problem under the effect of 

Poynting Robertson Light Drag and conclude that both the 

non-collinear libration points are unstable. Jain and 

Aggarwal [4] have performed an analysis in the R3BP with 

Stokes drag effect by taking both primaries as the point 

masses and found that non-collinear stationary solutions 

are linearly unstable. By considering smaller primary as an 

oblate spheroid, the existence and stability of the non-

collinear libration points with Stokes drag effect have been 

examined by Jain and Aggarwal [5]. They found that the 

non-collinear libration points are unstable. In a series of 

paper, Kumar et al. [6, 7, 8] discussed a lot of work about 

R3BP. Kumar et al. [9] studied existence and stability of 

libration points in the R3BP under the combined effects of 

finite straight segment and oblateness. They found that, 

there exist five libration points, out of which three are 

collinear and two are non-collinear with the primaries. The 

collinear libration points are unstable for all values of mass 

parameter ,  and the non-collinear libration points are 

stable if ,c   where c 0.038521-0.007356l
2
-

0.285002A. Liou et al. [10] have examined the effects of 

radiation pressure, Poynting-Robertson drag and Solar 

wind drag on dust grains trapped in mean motion 

resonances with the Sun and Jupiter in the R3BP. They 

concluded that all dust grain orbits are unstable in time 

when P-R and solar wind drag are included in the Sun-

Jupiter-dust system. Mishra et al. [11] examined the 

stability of triangular equilibrium points in 

photogravitational elliptic restricted three body problem 

with Poynting-Robertson drag by considering the smaller 

primary as an oblate spheroid and bigger primary as 

radiating. They concluded that the triangular equilibrium 

points remain unstable. The location and stability of 

equilibrium points in the planar circular restricted three 

body problem when the third body is acted on by a variety 

of drag forces have been investigated by Muray [12]. He 

found that L4 and L5 are asymptotically stable. 

Furthermore, the motion of a particle under the 

gravitational field of a massive straight segment has been 

studied by Riaguas et al. [13]. This model is used as an 

 



www.ijemr.net ISSN (ONLINE): 2250-0758, ISSN (PRINT): 2394-6962 

 

  211 Copyright © 2017. Vandana Publications. All Rights Reserved. 

 

approximation to the gravitational field of irregular shaped 

bodies such as asteroids, nuclei and planets moons. 

Riaguas et al. [14] have studied the non-linear stability of 

the equilibria in the gravity field of the finite straight 

segment and determined the orbital stability of the 

equilibria, for all values of the parameter k. They 

concluded that there are no non-collinear equilibrium 

solutions of the system.  

 

II. EQUATIONS OF MOTION 
 

Let m1 be the mass of oblate spheroid and m2 be 

the mass of a finite straight segment (called primaries), 

both are moving with angular velocity n (say) in circular 

orbits about their common centre of mass O. There is an 

infinitesimal mass m3 which is moving in the plane of 

motion of m1 and m2 (m1 ≥ m2). O(XYZ) and O(xyz) are 

inertial and synodic coordinate system respectively. The 

line joining m1 and m2 is taken as X-axis and O their centre 

of mass as origin and the line passing through O and 

perpendicular to OX and lying in the plane of motion of m1 

and m2 is taken as Y-axis. O(xyz) initially coincident with 

the inertial coordinate system O(XYZ). The synodic axes 

are rotating with angular velocity n (say) about Z-axis (the 

z-axis is coincident with Z-axis) (Fig. 1). 

 

 

Fig.1.The configuration of R3BP with Stokes drag 

 

The equations of motion of m3 in the 

dimensionless synodic coordinate system are 
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Stokes drag Force acting on m3 due to m1 along   

m1m3. 

The components of Stokes drag along the synodic axes are 

)'( yx SyxkS    and ),'( xy SxykS    where 

)1,0(k  is the dissipative constant depending on several 

physical parameters like the viscosity of the gas, the radius 

and mass of the particle. ,)('' 2/3 rrSS  is the 

Keplerian angular velocity at distance 22 yxr    from 

the origin O and )1,0( is the ratio between the gas and 

Keplerian velocities.  nKjyixOPr 


,ˆˆ angular 

velocity of the axes O(x, y)=constant. The Stokes drag 

effect is of the order of 05.0,10 5   k (generally 

)1,0(k  and )1,0( as stated above). 

 

III. LIBRATION POINTS 
 

The libration points are the solution of the equations 
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If we take k=0, then results agree with Kumar et 

al. [9]. The non-collinear libration points when smaller 

primary is a finite straight segment are given by Kumar et 

al. [9] 
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Now, we assume that the solution of the Eqs. (2) and (3) 

when 0k and 0y  

.1,,',' 212010   yyxx  (5) 

Putting these values of x',y' in Eqs. (2) and (3) and 

applying Taylor's series, we get 
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Substituting the values of x0 and y0 in Eqs. (6) and 

(7), we get 
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Thus, the location of non-collinear libration points 

)','(4 yxL  and )','(5 yxL in our case are 
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IV. STABILITY OF NON-COLLINEAR 

LIBRATION POINTS 
 

Following the procedure of Jain and Aggarwal 

[5], we get the characteristic equation 
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where the values of e, f, g, h, i, j, m, p and ki’s are given in 

appendix. 

In general form, the above equation can be written as 
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Here 2000 ,  and )3,2,1,0( ii  can be derived 

by evaluating e, f, g, h, i, j, m and p defined in the 

appendix. The value of the coefficient in the zero drag case 

is denoted by adding additional subscript 0. Now, we have 
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To check the stability of non-collinear libration 

points, we have followed the procedure of Jain and 

Aggarwal [5]. We have found that in our case k1  

and k23   and therefore, 31    and hence,  L4,5 is 

not asymptotically stable. Further, one of the roots of   

has positive real root. Hence L4,5 is not stable. Hence we 

conclude that L4,5 are linearly unstable. 

 

V. CONCLUSION 
 

The existence and stability of the non-collinear 

libration points in the restricted three body problem under 

the combined effects of Stokes drag, straight segment and 

oblateness has been investigated. There exist two non-

collinear libration points with the primaries. Using the 

terminology of Murray [12], we have examined the 

stability of non-collinear libration points and found that in 

our case k1  and k23    which proves that L4,5 

are linearly unstable. 

If we take k=0 and l=0, A=0, our results confirm 

with the classical restricted three body problem (Szebehely 

[15]). If l=0 and 0,0  Ak , then the results confirm with 

Jain and Aggarwal [5]. If we consider k=0, and 

,0,0  Al  then the results agree with Kumar et al. [9]. 
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