A Study of Person Identification using Keystroke Dynamics and Statistical Analysis

  • Nikhil Ashok Hegde
Keywords: Biometrics, Closed-set Identification, Identity Management Systems, Keystroke Dynamics, Ranking (Statistics)


In this paper, a basic study of closed-set identification using keystroke dynamics and simple statistical analysis has been carried out. Dwell time, flight time and one additional feature called key affinity are used as user-identifying features. The timing information is passed through a statistical layer to produce mean and standard deviation. This information is combined with key affinity to identify a rank-based person list. In conclusion, we compare the performance of this setup with other setups. This work aims to suggest that a keystroke dynamics system relying on pure statistics as its underlying algorithm may not be sufficiently accurate.


Download data is not yet available.


C. C. Loy, W. K. Lai, & C. P. Lim. (2007). Keystroke patterns classification using the artmap-fd neural network in intelligent information hiding and multimedia signal processing. IIHMSP 2007. Third International Conference on, 2007, 1, 61-64. Available at: http://ieeexplore.ieee.org/document/4457493.

Kevin Killourhy & Roy Maxion. (2009). CMU benchmark data set. Available at: https://www.cs.cmu.edu/~keystroke/.

P. S. Teh, A. B. J. Teoh, C. Tee, & T. S. Ong. (1201). A multiple layer fusion approach on keystroke dynamics. Pattern Analysis and Applications, 14(1), 23–36. Available at: https://link.springer.com/article/10.1007/s10044-009-0167-9

F. Monrose & A. D. Rubin. (2000). Keystroke dynamics as a biometric for authentication. Future Gener. Computer, 16(4), 351-359. Available at: http://www.cs.columbia.edu/4180/hw/keystroke.pdf

H. R. Lv & W. Y. Wang. (2006). Biologic verification based on pressure sensor leyboards and classifier fusion techniques. IEEE Transactions on Consumer Electronics, 52(3), 1057-1063. Available at: http://ieeexplore.ieee.org/document/1706507

J. V. Monaco et al. (2015, May). One-handed keystroke biometric identification competition. IEEE/IAPR International Conference on Biometrics, Phuket, Thailand, 58- 64. Available at: http://ieeexplore.ieee.org/document/7139076/.

Pin Shen Teh, Andrew Beng Jin Teoh, & Shigang Yue. (2013). A survey of keystroke dynamics biometrics. The Scientific World Journal, 2013(4), 1-24. Available at: https://www.hindawi.com/journals/tswj/2013/408280

R. Joyce & G. Gupta. (1990). Identity authentication based on keystroke latencies. Communications of the ACM, 33(2), 168-176. Available at: http://www.cs.cmu.edu/~maxion/courses/JoyceGupta90.pdf

S. Hocquet, J. Y. Ramel, & H. Cardot. (2007). User classification for keystroke dynamics authentication. Advances in Biometrics Proceedings, 4642, 531-539. Available at: (https://link.springer.com/chapter/10.1007/978-3-540-74549-5_56).

Soumik Mondal & Patrick Bours. (2017, June). Person identification by keystroke dynamics using pairwise user coupling. IEEE Transactions on Information Forensics and Security, 12(6), 1319-1329. Available at: http://ieeexplore.ieee.org/iel7/10206/7867904/07833085.pdf.

W. G. De Ru & J. H. P. Eloff. (1997). Enhanced password authentication through fuzzy logic. IEEE Expert, 12(6), 38-45. Available at: http://ieeexplore.ieee.org/document/642960.

How to Cite
Nikhil Ashok Hegde. (2018). A Study of Person Identification using Keystroke Dynamics and Statistical Analysis. International Journal of Engineering and Management Research, 8(3), 18-23. https://doi.org/10.31033/ijemr.8.3.1