Toxicity Effects of Aspartame on Embryonic Development of Zebrafish (Danio Rerio)

  • M.S.Weerasooriyagedara
Keywords: Zebrafish, Danio Rerio, Aspartame, Embryonic Development


Zebrafish (Danio rerio) is a widely used biological model to investigate different chemicals since it has certain similarities with human biology. Present study investigated the impact of Aspartame (APM); an excessively used food additive all over the world, on the embryonic development of zebrafish. Acute toxicity experiments were performed for a 4-day period using zebrafish eggs. Ten different test concentrations of aspartame 100, 250, 300, 500, 1000, 2000, 5000, 10000, 15000 and 20000 mg/L were used as treatment concentrations. The results clearly indicated that with the increase of the aspartame concentrations, different observable deformities are formed in zebrafish embryo. At the low concentrations of aspartame such as 100, 200, 300 mg/L there were no observable malformations in zebrafish embryonic development. However, at high concentrations such as 10,000, 15,000, 20,000mg/L there were distinguishable negative alterations such as growth retardation, shrinkage of chorion, yolk sac edema, lack of pigmentation, tail deformities and scoliosis in developing embryos. Zebrafish embryo can be successfully used to investigate food additives such as aspartame. However, the impacts of these concentrations on internal anatomical and physiological changes in zebrafish embryo should be comprehensively investigated.


Download data is not yet available.


Al-Qudsi, F. & Al-Jahdali, A. (2012). Effect of monosodium glutamate on chick embryo development. Journal of American Science, 8(10), 499-509.

Hoffman, E.J., Turner, K.J., Fernandez, J.M., Cifuentes, D., Ghosh, M., Ijaz, S., Jain, R.A., Kubo, F., Bill, B.R., Baier, H., Granato, M., Barresi, M.J., Wilson, S.W., Rihel, J., State, M.W., & Giraldez, A.J. (2016). Estrogens suppress a behavioral phenotype in zebrafish mutants of the autism risk gene. CNTNAP2 Neuron, 89(4), 725-33.

Butchko HH, Stargel WW, Comer CP, et al. (2002). Aspartame: Review of safety. Intake of aspartame vs acceptable daily intake. Regul Toxicol Pharmacol, 35(2 Pt 2), S1-93.

Cheng, S. H., Wai, A. W. K., So, C. H. & Wu, R. S. S. (2000). Cellular molecular basis of cadmium‐induced deformities in zebrafish embryos. Environmental toxicology chemistry, 19(12), 3024-3031.

FDA. (1981). Aspartame: commissioner’s final decision. Fed Reg (Food and Drug Administration), 46, 38285–38308.

FDA. (1983). Food additives permitted for direct addition to food for human consumption: Aspartame. Fed Reg (Food and Drug Administration), 48, 31376–31382.

FDA. (1996). Food additives permitted for direct addition to food for human consumption: Aspartame. Fed Reg (Food and Drug Administration), 61, 33654–33656.

Soffritti M, Belpoggi F, Manservigi M, Tibaldi E, Lauriola M, Falcioni L, & Bua L. (2010). Aspartame administered in feed, beginning prenatally through life span, induces cancers of the liver and lung in male Swiss mice. American Journal of Industrial Medicine, 53(12), 1197-206.

Gilmour DT, Jessen JR, & Lin S. (2002). Manipulating gene expression in the zebrafish. In: Zebrafish: A Practical Approach, Nusslein- Volhard C, Dahm R, (eds.). Oxford: Oxford University Press, 121-43.

Grunwald, D. J. & Eisen, J. S. (2002). Headwaters of the zebrafish—emergence of a new model vertebrate. Nature Reviews Genetics, 3(9), 717-724.

Hallare, A. V., Schirling, M., Luckenbach, T., Köhler, H. R. & Triebskorn, R. (2005). Combined effects of temperature cadmium on developmental parameters biomarker responses in zebrafish (Danio rerio) embryos. Journal of Thermal Biology, 30(1), 7-17.

Holcombe, G. W., Benoit, D. A., Leonard, E. N., & McKim, J. M. (1976). Long-term effects of lead exposure on three generations of brook trout (Salvelinus fontinalis). Journal of the Fisheries Board of Canada, 33(8), 1731-1741.

Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, McLaren S, Sealy I, Caccamo M, Churcher C, Scott C, Barrett JC, Koch R, Rauch GJ, White S, Chow W, Kilian B, Quintais LT, Guerra-Assuncao JA, Zhou Y, Gu Y, Yen J, Vogel JH, Eyre T, Redmond S, Banerjee R, Chi J, Fu B, Langley E, Maguire SF, Laird GK, Lloyd D, Kenyon E, Donaldson S, Sehra H, Almeida-King J, Loveland J, Trevanion S, Jones M, Quail M, Willey D, Hunt A, Burton J, Sims S, McLay K, Plumb B, Davis J, Clee C, Oliver K, Clark R, Riddle C, Eliott D, Threadgold G, Harden G, Ware D, Mortimer B, Kerry G, Heath P, Phillimore B, Tracey A, Corby N, Dunn M, Johnson C, Wood J, Clark S, Pelan S, Griffiths G, Smith M, Glithero R, Howden P, Barker N, Stevens C, Harley J, Holt K, Panagiotidis G, Lovell J, Beasley H, Henderson C, Gordon D, Auger K, Wright D, Collins J, Raisen C, Dyer L, Leung K, Robertson L, Ambridge K, Leongamornlert D, McGuire S, Gilderthorp R, Griffiths C, Manthravadi D, Nichol S, Barker G, Whitehead S, Kay M, Brown J, Murnane C, Gray E, Humphries M, Sycamore N, Barker D, Saunders D, Wallis J, Babbage A, Hammond S, Mashreghi-Mohammadi M, Barr L, Martin S, Wray P, Ellington A, Matthews N, Ellwood M, Woodmansey R, Clark G, Cooper J, Tromans A, Grafham D, Skuce C, Pandian R, Andrews R, Harrison E, Kimberley A, Garnett J, Fosker N, Hall R, Garner P, Kelly D, Bird C, Palmer S, Gehring I, Berger A, Dooley CM, Ersan-Urun Z, Eser C, Geiger H, Geisler M, Karotki L, Kirn A, Konantz J, Konantz M, Oberlander M, Rudolph-Geiger S, Teucke M, Osoegawa K, Zhu B, Rapp A, Widaa S, Langford C, Yang F, Carter NP, Harrow J, Ning Z, Herrero J, Searle SM, Enright A, Geisler R, Plasterk RH, Lee C, Westerfield M, de Jong PJ, Zon LI, Postlethwait JH, Nusslein-Volhard C, Hubbard TJ, Roest Crollius H, Rogers J, & Stemple DL. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature, 496(7746), 498–503.

Khayatzaden, J. & Abbasi, E. (2010). The effects of heavy metals on aquatic ecosystem. The 1st International Applied Geological Congress, 688-694.

Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Developmental Dynamics, 203(3), 253-310.

Konantz M, Balci TB, Hartwig UF, Dellaire G, Andre MC, Berman JN, & Lengerke C. (2012). Zebrafish xenografts as a tool for in vivo studies on human cancer. Annals of the New York Academy of Sciences, 1266, 124–137.

Nguyen, L. T. H. & Janssen, C. R. (2002). Embryo-larval toxicity tests with the African catfish (Clarias gariepinus): comparative sensitivity of endpoints. Archives of Environmental Contamination Toxicology, 42(2), 256-262.

Oliveira, R., Domingues, I., Grisolia, C. K. & Soares, A. M. (2009). Effects of triclosan on zebrafish early-life stages adults. Environmental Science Pollution Research, 16(6), 679-688.

Olney JW, Farber NB, Spitznagel E, et al. (1996). Increasing brain tumor rates: is there a link to aspartame? Journal of Neuropathol Exp Neurol, 55, 1115 – 23.

Pei DS, Yang XJ, Liu W, Guikema J, Schrader C, & Strauss PR. (2011). A novel regulatory circuit in base excision repair involving AP endonuclease 1, Creb1 and DNA polymerase beta. Nuclear Acids Research, 39(8), 3156–3165.

Shephard SE, Wakabayashi K, & Nagao M. (1993). Mutagenic activity of peptides and the artificial sweetener aspartame after nitrosation. International Journal of Genomics, 31(5), 323–9.

Stouthart, A. J. H. X., Spanings, F. A. T., Lock, R. A. C. & Bonga, S. W. (1994). Effects of low water pH on lead toxicity to early life stages of the common carp (Cyprinus carpio). Aquatic toxicology, 30(2), 137-151.

Sullivan C & Kim CH. (2008). Zebrafish as a model for infectious disease and immune function. Fish Shellfish Immunol, 25(4), 341–350.

Talbot JM, & Fisher KD. (1978). The need for special foods and sugar substitutes by individuals with diabetes mellitus. Diabetes Care, 1(4), 231–240.

How to Cite
M.S.Weerasooriyagedara. (2018). Toxicity Effects of Aspartame on Embryonic Development of Zebrafish (Danio Rerio). International Journal of Engineering and Management Research, 8(1), 183-188. Retrieved from