Intuitionistic Fuzzy \tilde{g} Connected Spaces

P.Chandramoorthi
Lecturer, Department of Mathematics, Nachimuthu Polytechnic College, Pollachi, INDIA

ABSTRACT
In this paper, we study the notion of intuitionistic fuzzy \tilde{g} connected spaces and study some of their properties.

Keywords-- Intuitionistic Fuzzy \tilde{g} Connected Space, Intuitionistic Fuzzy Compact Space, Hypothesis

I. INTRODUCTION
Connectedness plays an important role in spacial kind of objects. Yong Chan and Abbas [8] have investigated connectedness in intuitionistic fuzzy topological spaces. In 1997, Coker [5] introduced intuitionistic fuzzy C_5 connectedness in intuitionistic fuzzy topological spaces and in 2000, Turnali and coker [7] introduced GO connectedness in intuitionistic fuzzy topological spaces. There after several author have extended the concept of connectedness in intuitionistic fuzzy topological spaces. In this chapter, we study \tilde{g} connectedness and investigate some of their properties in intuitionistic fuzzy topological spaces.

II. INTUITIONISTIC FUZZY \tilde{g} CONNECTED SPACES

Definition 2.1.
An IFTS (X, τ) is said to be an intuitionistic fuzzy \tilde{g} connected space (IF\tilde{g} connected spaces in short) if the only IFSSs which are both an IF\tilde{g} OS and an IF\tilde{g} CS are $0\sim, 1\sim$.

Theorem 2.2.
Every IF\tilde{g} connected space is IF C_5 connected space, but not conversely.

Proof: Let (X, τ) be an intuitionistic fuzzy \tilde{g} connected space and suppose that (X, τ) is not intuitionistic fuzzy C_5 connected. Then there exists a proper intuitionistic fuzzy set A which is both an intuitionistic fuzzy open and intuitionistic fuzzy closed. Since every intuitionistic fuzzy open set (resp. intuitionistic fuzzy closed set) is intuitionistic \tilde{g} open (resp. intuitionistic fuzzy \tilde{g} closed), X is not intuitionistic fuzzy \tilde{g} connected, a contradiction. Therefore (X, τ) must be an intuitionistic C5 connected space.

Example 2.3.
Let $X = \{a, b\}$ and $G = \langle (0.5, 0.6), (0.5, 0.4) \rangle$. Then $\tau = \{0\sim, G, 1\sim\}$ is IFT on X. Then X is an IF C_5 connected space but not IF\tilde{g} connected, since the IF\tilde{g} $A = \langle (0.4, 0.4), (0.6, 0.6) \rangle$ in X is both an IF\tilde{g} CS and IF\tilde{g} OS in X.

Theorem 2.4.
An IFTS (X, τ) is IF\tilde{g} connected if and only if there exists no non zero IF\tilde{g} OSs A and B in X such that $A = Bc$.

Proof: Necessity: Suppose that A and B are IF\tilde{g} OSs such that $A = 0\sim = B \neq Bc$. Since $A = Bc$, B is an IF\tilde{g} OS which implies that $Bc = A$ is an IF\tilde{g} CS and $B = 0\sim$ this implies that $Bc = 1\sim$. Hence there exists a proper IF\tilde{g} $A (A = 0\sim, A = 1\sim)$ such that A is both an IF\tilde{g} OS and IF\tilde{g} CS. But this is contradiction to the fact that X is intuitionistic fuzzy \tilde{g} connected.

Sufficiency: Let (X, τ) be an IFTS and A is both an IF\tilde{g} OS and IF\tilde{g} CS in X such that $A = 0\sim = Bc$. Now take $B = Ac$. In this case B is intuitionistic fuzzy \tilde{g} open and $A = 1\sim$. This implies that $B = Ac = 0\sim$ which is a contradiction. Hence there is no proper intuitionistic fuzzy set of X which is both an IF\tilde{g} OS and IF\tilde{g} CS. Therefore (X, τ) is intuitionistic fuzzy \tilde{g} connected.

Theorem 2.5.
An IFTS (X, τ) is intuitionistic fuzzy \tilde{g} connected if and only if there exists no non zero IF\tilde{g} OSs A and B in X such that $A = Ac$, $B = (cl(A))c, A = (cl(B))c$. Since $(cl(A))c$ and $(cl(B))c$ are IF\tilde{g} OSs in X. This implies that (X, τ) is not IF\tilde{g} connected, which is a contradiction.

Sufficiency: Let A is both an IF\tilde{g} OS and IF\tilde{g} CS such that $A = 0\sim = Ac$. Taking $B = Ac$, we obtain a contradiction to our hypothesis. Hence (X, τ) is an IF\tilde{g} connected space.

Theorem 2.6.
Let (X, τ) be an intuitionistic fuzzy $\tilde{gt} 1/2$ space, then the following conditions are equivalent:

i) X is intuitionistic fuzzy \tilde{g} connected, ii) X is intuitionistic fuzzy C_5 connected.
Proof: (i) \Rightarrow (ii) is obvious by the Theorem 2.2. (ii) \Rightarrow (i) Let (X, τ) be an IF C5 connected space. Suppose (X, τ) is not intuitionistic fuzzy connected, then there exists a proper IFS A in (X, τ) such that A is both an IFg OS and an IFg CS. But since X is an IFg T1/2 space, A is an IFOS and IFCS which implies that X is not IF C5 connected, a contradiction. Therefore (X, τ) must be IFg connected.

Theorem 2.7. If $f: (X, \tau) \rightarrow (Y, \sigma)$ is an IFg continuous surjection and (X, τ) is an IFg connected space, then (Y, σ) is an IF C5 connected space.

Proof: Let (X, τ) be an IFg connected space. Suppose (Y, σ) is not IF C5 connected, then there exists a proper IFS A which is both an IFOS and an IFCS in (Y, σ). Since f is an IFg continuous mapping, $f^{-1}(A)$ is both an IFg OS and an IFg CS in (X, τ). But this is a contradiction to our hypothesis. Hence (Y, σ) must be an IF C5 connected space.

Theorem 2.8. If $f: (X, \tau) \rightarrow (Y, \sigma)$ is an IFg irresolute surjection and (X, τ) is an IFg connected space, then (Y, σ) is also an IFg connected space. Proof: Suppose (Y, σ) is not an IFg connected space, then there exists a proper IFS A such that A is both an IF OS and an IFg CS in (Y, σ). Since f is an IFg irresolute surjection, $f^{-1}(A)$ is both an IFg OS and an IFg CS in (X, τ). But this is a contradiction to our hypothesis. Hence (Y, σ) must an be an IFg connected space.

Definition 2.9. An IFTS (X, τ) is IFg connected between two IFSs A and B if there is no IFg OS E in (X, τ) such that $A \subseteq E$ and $E \subseteq B$.

Theorem 2.10. If an IFTS (X, τ) is IFg connected between two IFSs A and B, then it is IF C5 connected between A and B but the converse may not be true in general.

Proof: Suppose (X, τ) is not IF C5 connected between A and B, then there exists an IFOS E in (X, τ) such that $A \subseteq E$ and $E \subseteq B$. Since every IFOS is an IFg OS, there exists an IFg OS E in (X, τ) such that $A \subseteq E$ and $E \subseteq B$. This implies that (X, τ) is not IFg connected between A and B, contradiction to our hypothesis. Therefore (X, τ) must be IF C5 connected between A and B.

Theorem 2.11. If an IFTS (X, τ) is IFg connected between two IFSs A and B and $A \subseteq A_1, B \subseteq B_1$, then (X, τ) is IFg connected between A_1 and B_1.

Proof: Suppose that (X, τ) is not IFg connected between A_1 and B_1, then b.

Theorem 2.12. Let (X, τ) be an IFTS and A and B be IFTSs in (X, τ). If $A \subseteq B$, then (X, τ) is IFg connected between A and B.

Proof: Suppose that (X, τ) is not IFg connected between A and B. Then there exists an IFg OS E in (X, τ) such that $A \subseteq E$ and $E \subseteq B$. This implies that $A \subseteq E$. But this is a contradiction to our hypothesis. Therefore (X, τ) must be IFg connected between A and B.

REFERENCES