Vector Autoregressive (VAR) for Rainfall Prediction

  • Tita Rosita
  • Zaekhan
  • Rachmawati Dwi Estuningsih
Keywords: Vector Auto Regressive (VAR), Circular Data, Rainfall

Abstract

Weather and climate information is useful in a variety of areas including agriculture, tourism, transportation both land, sea and air. For that, up to date weather and climate data and its forecasting are essential. This study aims to create rainfall modeling with Vector Auto Regressive (VAR) using circular data and linear data. The data used comes from the station climatology Darmaga Bogor period 2006-2017. The VAR model (2) of the rainfall variables in the t-month is affected by the t-1 moisture air moisture, the t-2 moisture air and the air temperature at t-2. This VAR model (2) is used to forecast the next period. The mean absolute percentage error (MAPE) VAR (2) obtained was 42.18. The novelty of the study is (1) VAR modeling for rainfall prediction, (2) Use of circular data for wind direction data.

Downloads

Download data is not yet available.

References

Arpan F, Kirono GDC & Sudjarwadi. (2004). Kajian meteorologis hubungan antara hujan harian dan unsur-unsur cuaca studi kasus di stasiun meteorologi adisucipto yogyakarta. Majalah Geografi Indonesia, 2, 69-79.

Boer R. (2003). Penyimpangan iklim di Indonesia. makalah seminar nasional ilmu tanah. Yogyakarta, KMIT Jurusan Tanah Fakultas Pertanian UGM. Yogyakarta.

Ender W. (1995). Applied Econometric Time Series. New York: Willey and sons. Inc.

Fisher NI. (1993). Statistical analysis of circular data. Cambridge: Cambridge University Press.

Hadi YS. (2003). Analisis vector autoregressive (VAR) terhadap korelasi antara pendapatan nasional dan investasi pemerintah di Indonesia 1983/1984-1999/2000. Jurnal Keuangan dan Moneter, 2, 107-121.

Naylor, L.N., W.P. Falcon, D. Rochberg, & N. Wada. (2001). Using el niño/southern oscillation climate data to predict rice production in Indonesia. Climatic Change, 50(3), 255-265.

Jammalamadaka SR & Sengupta A. (2001). Topics in circular statistics (Series on multivariate analysis). Singapore: World Scientific.

Huffman, G.J., R.F. Adler, D.T. Bolvin, G. Gu, E.J. Nelkin, K.P. Bowman, Y. Hong, E.F. Stocker, & D.B. Wolff. (2007). The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8(1), 38-55.

Mardia KV, Peter EJ. (1972). Directional statistics. New York: Willey and sons. Ltd.

Lutkepohl H. 1993. Introduction to multiple time series analysis. Verlag: Springer- Verlag.

Gujarati, Damodar N. (2006). Essential of econometrics. New York: McGraw-Hill Co.

Adi Nugroho, Sri Hartati, Subanar, & Khabib Mustofa. (2014). Vector Autoregression (Var) model for rainfall forecast and isohyet mapping in semarang – central java–Indonesia. International Journal of Advanced Computer Science and Applications, 5(11), 44-49.

Sims, C. A., & Zha, T. (1998). Bayesian methods for dynamic multivariate models. International Economic Review, 39(4), 949- 968.

Sandi IM. (1987). Iklim regional Indonesia. Depok: UI Jurusan Geografi.

SAS Institut Inc. (1996). Forecasting examples for business and economics using the SAS system. North Carolina, USA: SAS Intitut Inc.

Subarna D. (2009). Aplikasi jaringan neural untuk pemodelan dan prediksi curah hujan. Berita Dirgantara, 1, 13-18.

Tjasjono B. 1992. Klimatologi Terapan. Bandung: ITB.

Published
2018-04-30
How to Cite
Tita Rosita, Zaekhan, & Rachmawati Dwi Estuningsih. (2018). Vector Autoregressive (VAR) for Rainfall Prediction. International Journal of Engineering and Management Research, 8(2), 96-102. Retrieved from https://www.ijemr.net/ojs/index.php/ojs/article/view/369
Section
Articles