Classification of Metals used in the Sand Casting Process

  • A. Arun Student, Department of Mechanical Engineering, Saranathan College of Engineering, Anna University, Tiruchirappalli, Tamil Nadu, INDIA
  • R. BalaKrishnan Student, Department of Mechanical Engineering, Saranathan College of Engineering, Anna University, Tiruchirappalli, Tamil Nadu, INDIA
  • R. Jayanthi Student, Department of Mechanical Engineering, Saranathan College of Engineering, Anna University, Tiruchirappalli, Tamil Nadu, INDIA
  • H M S. Kevin Student, Department of Mechanical Engineering, Saranathan College of Engineering, Anna University, Tiruchirappalli, Tamil Nadu, INDIA
  • A. Ranjith Raj Professor, Department of Mechanical Engineering, Saranathan College of Engineering, Anna University, Tiruchirappalli, Tamil Nadu, INDIA
  • S. Paramaguru Professor, Department of Mechanical Engineering, Saranathan College of Engineering, Anna University, Tiruchirappalli, Tamil Nadu, INDIA
  • R. Kumar Professor, Department of Mechanical Engineering, Saranathan College of Engineering, Anna University, Tiruchirappalli, Tamil Nadu, INDIA
  • M. Ganesan Professor, Department of Mechanical Engineering, Saranathan College of Engineering, Anna University, Tiruchirappalli, Tamil Nadu, INDIA
  • R. Rekha Professor, Department of Mechanical Engineering, Saranathan College of Engineering, Anna University, Tiruchirappalli, Tamil Nadu, INDIA
Keywords: Sand Casting, Casting Software, Metals

Abstract

The Sand Casting Process And The Different Methods Used To Cast The Metals Are The Subjects Of This Paper. Casting Is A Manufacturing Process For Creating Complex Material Shapes. A Large Classification Is Needed To Understand The Metals Used By Researches, Why They Were Used, And What The Most Commonly Used Metal For Their Research Is. We Studied And Understanded The Various Types Of Sand Casting Processes Used By The Researchers In This Review Paper. And We Categorized And Graded All The Papers We Reviewed And Classified Based On Their Respective Study Areas And Material Use.

Downloads

Download data is not yet available.

References

Muhammad HuzaifaRaza, Ahmad Wasim, Muhammad Sajid, & Salman Hussian. (2020). Investigating the effects of gating design on mechanical properties of aluminium alloy in sand casting process. Available at: https://doi.org/10.1016/j.jksues.2020.03.004.

J. Jensin Joshua, A. Abraham, & Eben Andrews. (2020). Design of experiments to optimize casting process of aluminum alloy 7075 in addition of TiO2 using Taguchi method. Available at: https://doi.org/10.1016/j.matpr.2020.05.164.

Zhen Xu, Sixue Wang, Hongbin Wang, Hua Song, Shengli Li, & Xingyu Chen. (2020). Effect of cooling rate on microstructure and properties of twin roll casting aluminium alloy sheet. Available at: https://doi.org/10.3390/met10091168.

Vishal N.Kaila & Indravadan B.Dave. (2020). The influence of coating sand materials on shell mold properties of investment casting process. Available at: https://doi.org/10.1016/j.matpr.2020.06.401.

Swapnil Agrahari. (2020). Effect of cooling rate on microstructures and mechanical property of Al 1230 alloy in a sand casting process. Available at: https://doi.org/10.1016/j.matpr.2020.02.372.

Shilpa. (2020). A combinatorial approach to optimize the properties of green sand used in casting mould. Available at: doi.org/10.1016/j.matpr.2020.05.465.

Ayar MS, Ayar VS, & George PM. (2020). Simulation and experimental validation for defect reduction in geometry varied aluminium plates casted using sand casting. Available at: https://doi.org/10.1016/j.matpr.2020.02.788.

Barot RP & Ayar VS. (2020). Casting simulation and defect identification of geometry varied plates with experimental validation. Available at: https://doi.org/10.1016/j.matpr.2020.02.575.

Gres T, Nardi VG, Schmid S, Hoyer J, Rizaiev Y, Boll T, Seils S, Tonn B, & Volk W. (2020) Vertical continuous compound casting of copper aluminumbilayer rods. Journal of Materials Processing Technology. Available at: https://doi.org/10.1016/j.jmatprotec.2020.116854.

Husain NH, Ahmad AH, & Rashidi MM. (2020). Thermal analysis of 6061 wrought aluminium alloy using cooling curve analysis-computer aided (CCA-CA) method. Available at: https://iopscience.iop.org/article/10.1088/1757-899X/788/1/012018/meta.

Ramana MV, Kiran CS, & Rao VV. (2020). Experimental investigation on the time-temperature history of Al-Si alloy while cooling in fresh and reclaimed silicate sand mould. Available at: https://doi.org/10.1016/j.matpr.2020.09.322.

Borikar GP & Chavan ST. (2020). Optimization of casting yield in multi-cavity sand moulds of al-alloy components. Available at: https://doi.org/10.1016/j.matpr.2019.12.305.

Eugen Demler, Hans Jürgen, & Maier Florian Nürnberger. (2020). Casting manufacturing of cylindrical preforms made of low alloy steels. Available at: https://doi.org/10.1016/j.promfg.2020.04.333.

Rodríguez-González P, Fernández-Abia AI, Castro-Sastre MA, Robles PE, Barreiro J, & Leo P. (2019). Comparative study of aluminum alloy casting obtained by sand casting method and additive manufacturing technology. Available at: https://doi.org/10.1016/j.promfg.2019.09.058.

Manvandra Kumar Singha, Rakesh Kumar, & Gautamb, GopalJic. (2019). Mechanical properties and corrosion behavior of copper based hybrid composites synthesized by stir casting. Available at: https://doi.org/10.1016/j.rinp.2019.102319.

P.B. Chikali & V.D. Shinde. (2019). Analysis of machinability in ductile iron casting. Available at: https://doi.org/10.1016/j.matpr.2019.12.064.

Hongsheng ding, Xuesong Xu, Shenwangwang, & Haitao Huang. (2019). Numerical Simulation and experimental verification of electromagneric field of continuous casting copper crucible. Available at: https://doi.org/10.1016/j.promfg.2019.12.083.

Xu Q, Xu K, Yao X, Zhang J, & Wang B. (2018). Sand casting safety assessment for foundry enterprises: fault tree analysis, Heinrich accident triangle, HAZOP–LOPA, bow tie model. Available at: https://doi.org/10.1098/rsos.180915.

Chakravarti S, Sen S, & Bandyopadhyay A. (2018). A study on solidification of large iron casting in a thin water cooled copper mould. Available at: https://doi.org/10.1016/j.matpr.2017.11.676.

Hodbe GA & Shinde BR. (2018). Design and simulation of Lm 25 sand casting for defect minimization. Available at: https://doi.org/10.1016/j.matpr.2017.12.018.

Shahria S, Tariquzzaman M, Rahman MH, Al Amin M, & Rahman MA. (2017). Optimization of molding sand composition for casting Al alloy. Available at: https://www.kuet.ac.bd/webportal/ppmv2/uploads/149508365210.11648.j.ijmea.20170503.13.pdf.

Tiwari SK, Singh RK, & Srivastava SC. (2016). Optimisation of green sand casting process parameters for enhancing quality of mild steel castings. Available at: https://doi.org/10.1504/IJPQM.2016.074446.

A.M. Lovatt. (2016). Process and alloy selection for aluminium casting. Available at: https://doi.org/10.1080/13640461.2000.11819358.

Stefanescu D M. (2015). Thermal analysis—Theory and applications in metalcasting. Available at: https://link.springer.com/article/10.1007/BF03355598.

Ajibola OO, Oloruntoba DT, & Adewuyi BO. (2015). Effects of moulding sand permeability and pouring temperatures on properties of cast 6061 aluminium alloy. Available at: https://www.hindawi.com/archive/2015/632021/abs/.

Bhatt H, Barot R, Bhatt K, Beravala H, & Shah J. (2014). Design optimization of feeding system and solidification simulation for cast iron. Available at: https://doi.org/10.1016/j.protcy.2014.08.046.

Harshil Bhatt, RakeshBarot, Kamlesh Bhatt, Hardik Beravala, & Jay Shah. (2014). Design optimization of feeding system and solidification simulation for cast iron. Available at: https://doi.org/10.1016/j.protcy.2014.08.046.

Choudhari CM, Narkhede BE, & Mahajan SK. (2014). Methoding and simulation of LM 6 sand casting for defect minimization with its experimental validation. Available at: https://doi.org/10.1016/j.proeng.2014.12.393.

Choudhari CM, Narkhede BE, & Mahajan SK. (2013). Modeling and simulation with experimental validation of temperature distribution during solidification process in Sand casting. Available at: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.402.7161&rep=rep1&type=pdf.

Choudhari CM, Padalkar KJ, Dhumal KK, Narkhede BE, & Mahajan SK. (2013). Defect free casting by using simulation software. Available at: https://doi.org/10.4028/www.scientific.net/AMM.313-314.1130.

Taufik RS & Sulaiman S. (2013). Thermal expansion model for cast aluminium silicon carbide. Available at: https://doi.org/10.1016/j.proeng.2013.12.197.

Battezzati L, Baricco M, Marongiu F, Serramoglia G, & Bergesio D. (2013). Melting and solidification studies by advanced thermal analysis of cast iron. Available at: https://www.fracturae.com/index.php/MST/article/view/1077.

Liu X, Li X, Jiang Y, & Xie J. (2012). Effect of casting temperature on porous structure of lotus-type porous copper. Available at: https://doi.org/10.1016/j.proeng.2011.12.478.

Motoyama Y, Takahashi H, Inoue Y, Shinji K, & Yoshida M. (2013). Dynamic measurements of the load on castings and the contraction of castings during cooling in sand molds. Available at: https://doi.org/10.1016/j.jmatprotec.2012.09.014.

S.Santhi. (2012). Estimation of shrinkage porosity of a cast aluminium alloy. Available at: https://www.researchgate.net/profile/Samavedam-Santhi-2/publication/273261132_Estimation_of_shrinkage_porosity_of_a_cast_aluminium_alloy/links/54fd464a0cf270426d11a881/Estimation-of-shrinkage-porosity-of-a-cast-aluminium-alloy.pdf.

Kulkarni S & Radhakrishna D. (2012). Effect of casting/mould interfacial heat transfer during solidification of aluminium alloys cast in CO2-sand mould. Available at: https://dx.doi.org/10.14288/1.0073390.

Rubén Lora, Attila Diószegi, & Lennart Elmquist. (2010). Solidification study of gray cast iron in a resistance furnace. Available at: https://doi.org/10.4028/www.scientific.net/KEM.457.108.

U. C. Nwaogu. (2010). New sol–gel refractory coatings on chemically-bonded sand cores for foundry applications to improve casting surface quality. Available at: https://doi.org/10.1016/j.surfcoat.2011.02.042.

A.A. Canale. (2010). Thermal analysis during solidification of cast Al–Si alloys. Available at: https://doi.org/10.1016/j.tca.2010.06.026.

Cellini GS & Tomesani L. (2008). Metal head-dependent HTC in sand casting simulation of aluminium alloys. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.538.89&rep=rep1&type=pdf.

Ravi B & Joshi D. (2007). Feedability analysis and optimisation driven by casting simulation. Available at: https://www.researchgate.net/profile/B-Ravi-2/publication/228648823_Feedability_Analysis_and_Optimisation_Driven_by_Casting_Simulation/links/53f0dbaf0cf26b9b7dce10da/Feedability-Analysis-and-Optimisation-Driven-by-Casting-Simulation.pdf.

S.M. Liang. (2007) Thermal analysis and solidification pathways of Mg–Al–Ca system alloys. Available at: https://doi.org/10.1016/j.msea.2007.07.025.

Guharaja S, Haq AN, & Karuppannan KM. (2006). Optimization of green sand casting process parameters by using Taguchi’s method. Available at: https://link.springer.com/article/10.1007/s00170-005-0146-2.

Vijayaram TR, Sulaiman S, Hamouda AM, & Ahmad MH. (2006). Foundry quality control aspects and prospects to reduce scrap rework and rejection in metal casting manufacturing industries. Available at: https://doi.org/10.1016/j.jmatprotec.2005.09.027.

Shabestari SG & Malekan M. (2005). Thermal analysis study of the effect of the cooling rate on the microstructure and solidification parameters of 319 aluminum alloy. Available at: https://doi.org/10.1179/cmq.2005.44.3.305.

Meneghini A & Tomesani L. (2005). Chill material and size effects on HTC evolution in sand casting of aluminum alloys. Available at: https://doi.org/10.1016/j.jmatprotec.2005.02.114.

Mirbagheri SM, Dadashzadeh M, Serajzadeh S, Taheri AK, & Davami P. (2004). Modeling the effect of mould wall roughness on the melt flow simulation in casting process. Available at: https://doi.org/10.1016/j.apm.2004.03.007.

Sulaiman S & Keen TC. (1997). Flow analysis along the runner and gating system of a casting process. Available at: https://doi.org/10.1016/S0924-0136(96)02708-2.

Y.W. Lee, E. Chang, & C.F. Chien. (1990). Modeling of feeding behavior of solidifying Al–7Si–0.3Mg alloy plate castings. Available at: https://link.springer.com/article/10.1007%2FBF02654250.

Jarmo Tamminen. (1988). Thermal analysis for investigation of solidification mechanisms in metals and alloys. Available at: http://folk.ntnu.no/arnberg/taw32%20A.pdf.

Published
2021-04-03
How to Cite
A. Arun, R. BalaKrishnan, R. Jayanthi, H M S. Kevin, A. Ranjith Raj, S. Paramaguru, R. Kumar, M. Ganesan, & R. Rekha. (2021). Classification of Metals used in the Sand Casting Process. International Journal of Engineering and Management Research, 11(2), 13-19. https://doi.org/10.31033/ijemr.11.2.2